$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
El otro está dada por
una identidad bien conocida:
\begin{align}
\sum_{k = 1}^{n}{1 \over k^{1/2}} & =
2\root{n} + \zeta\pars{1 \over 2} +
{1 \over 2}\int_{n}^{\infty}{\braces{x} \over x^{3/2}}\,\dd x
\end{align}
Tenga en cuenta que
$\ds{0 <
{1 \over 2}\int_{n}^{\infty}{\llaves{x} \over x^{3/2}}\,\dd x <
{1 \over 2}\int_{n}^{\infty}{\dd x \sobre x^{3/2}} = {1 \over \raíz{n}}}$ tal que
$$
2\raíz{n} + \zeta\pars{1 \over 2} <
\sum_{k = 1}^{n}{1 \over k^{1/2}} <
2\raíz{n} + {1 \over \raíz{n}} + \zeta\pars{1 \over 2}
$$
y
$$
\sum_{k = 1}^{n}{1 \over k^{1/2}} \approx
2\raíz{n} + {1 \over 2\raíz{n}} + \zeta\pars{1 \over 2}\quad
\mbox{con}\ absoluta\ error\ < {1 \over 2\raíz{n}}
$$