$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Con $\ds{\quad x \equiv {t^{2} + a \over 2t}\quad}$ y
$\ds{\quad t = x - \root{x^{2} - a}}$:
\begin{align}
&\bbox[10px,#ffd]{\ds{\int{\dd x \over \pars{x^{2} + b}\root{x^{2} - a}}}} =
-\int{4t \over t^{4} + 2\pars{a + 2b}t^{2} + a^{2}}\,\dd t
\\[5mm] \stackrel{y\ =\ t^{2}}{=}\,\,\,&
-2\int{\dd y \over y^{2} + 2\pars{a + 2b}y + a^{2}}
\\[5mm] = &\
-2\int{\dd y \over \pars{y + a + 2b}^{2} + a^{2} - \pars{a + 2b}^{2}} =
-2\int{\dd y \over \pars{y + a + 2b}^{2} - 4b\pars{b - a}}
\end{align}
En este punto, la integración es una escuela primaria. ¿Cuál es la relación entre el $\ds{a\ \mbox{and}\ b}$ ?.