Bien, vamos a escribir:
$$\mathscr{L}_x\left[\frac{x}{\text{a}}\cdot\mathscr{J}_\alpha\left(\text{b}\cdot x\right)\right]_{\left(\text{s}\right)}=\frac{1}{\text{a}}\cdot\mathscr{L}_x\left[x\cdot\mathscr{J}_\alpha\left(\text{b}\cdot x\right)\right]_{\left(\text{s}\right)}\tag1$$
Utilizando el 'dominio de la frecuencia derivado de lapropiedad de la transformada de Laplace:
$$\frac{1}{\text{a}}\cdot\mathscr{L}_x\left[x\cdot\mathscr{J}_\alpha\left(\text{b}\cdot x\right)\right]_{\left(\text{s}\right)}=-\frac{1}{\text{a}}\cdot\frac{\partial}{\partial\text{s}}\left\{\mathscr{L}_x\left[\mathscr{J}_\alpha\left(\text{b}\cdot x\right)\right]_{\left(\text{s}\right)}\right\}\tag2$$
Utilizando la"escala de tiempo"la propiedad de la transformada de Laplace:
$$-\frac{1}{\text{a}}\cdot\frac{\partial}{\partial\text{s}}\left\{\mathscr{L}_x\left[\mathscr{J}_\alpha\left(\text{b}\cdot x\right)\right]_{\left(\text{s}\right)}\right\}=-\frac{1}{\text{a}}\cdot\frac{\partial}{\partial\text{s}}\left\{\frac{1}{\text{b}}\cdot\mathscr{L}_x\left[\mathscr{J}_\alpha\left(x\right)\right]_{\left(\frac{\text{s}}{\text{b}}\right)}\right\}=$$
$$-\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\frac{\partial}{\partial\text{s}}\left\{\mathscr{L}_x\left[\mathscr{J}_\alpha\left(x\right)\right]_{\left(\frac{\text{s}}{\text{b}}\right)}\right\}\tag3$$
Utilizando la definición de la función de Bessel:
$$-\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\frac{\partial}{\partial\text{s}}\left\{\mathscr{L}_x\left[\mathscr{J}_\alpha\left(x\right)\right]_{\left(\frac{\text{s}}{\text{b}}\right)}\right\}=$$
$$-\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{1}{\Gamma\left(1+\alpha+\text{n}\right)}\cdot\frac{\partial}{\partial\text{s}}\left\{\mathscr{L}_x\left[\left(\frac{x}{2}\right)^{\alpha+2\text{n}}\right]_{\left(\frac{\text{s}}{\text{b}}\right)}\right\}=$$
$$-\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{1}{\Gamma\left(1+\alpha+\text{n}\right)}\cdot\frac{\partial}{\partial\text{s}}\left\{\frac{1}{2^{\alpha+2\text{n}}}\cdot\frac{\Gamma\left(1+\alpha+2\text{n}\right)}{\left(\frac{\text{s}}{\text{b}}\right)^{1+\alpha+2\text{n}}}\right\}=$$
$$-\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{1}{2^{\alpha+2\text{n}}}\cdot\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{\Gamma\left(1+\alpha+2\text{n}\right)}{\Gamma\left(1+\alpha+\text{n}\right)}\cdot\frac{\partial}{\partial\text{s}}\left\{\frac{1}{\left(\frac{\text{s}}{\text{b}}\right)^{1+\alpha+2\text{n}}}\right\}=$$
$$-\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{1}{2^{\alpha+2\text{n}}}\cdot\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{\Gamma\left(1+\alpha+2\text{n}\right)}{\Gamma\left(1+\alpha+\text{n}\right)}\cdot\left(-\frac{1+\alpha+2\text{n}}{\text{s}}\cdot\frac{1}{\left(\frac{\text{s}}{\text{b}}\right)^{1+\alpha+2\text{n}}}\right)=$$
$$\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{1}{2^{\alpha+2\text{n}}}\cdot\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{\Gamma\left(2+\alpha+2\text{n}\right)}{\Gamma\left(1+\alpha+\text{n}\right)}\cdot\frac{1}{\text{s}}\cdot\frac{1}{\left(\frac{\text{s}}{\text{b}}\right)^{1+\alpha+2\text{n}}}\tag4$$
Al $\Re\left(\alpha+2\text{n}\right)>-1\space\wedge\space\Re\left(\text{s}\right)>0$
Ahora, cuando $\alpha=1$:
$$\mathscr{L}_x\left[\frac{x}{\text{a}}\cdot\mathscr{J}_1\left(\text{b}\cdot x\right)\right]_{\left(\text{s}\right)}=$$
$$\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{1}{2^{1+2\text{n}}}\cdot\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{\Gamma\left(2+1+2\text{n}\right)}{\Gamma\left(1+1+\text{n}\right)}\cdot\frac{1}{\text{s}}\cdot\frac{1}{\left(\frac{\text{s}}{\text{b}}\right)^{1+1+2\text{n}}}=$$
$$\frac{1}{\text{a}}\cdot\frac{1}{\text{b}}\cdot\sum_{\text{n}=0}^\infty\frac{1}{2^{1+2\text{n}}}\cdot\frac{\left(-1\right)^\text{n}}{\text{n}!}\cdot\frac{\Gamma\left(3+2\text{n}\right)}{\Gamma\left(2+\text{n}\right)}\cdot\frac{1}{\text{s}}\cdot\frac{1}{\left(\frac{\text{s}}{\text{b}}\right)^{2+2\text{n}}}\tag5$$
Ahora, cuando $\text{a}=\text{b}$:
$$\mathscr{L}_x\left[\frac{x}{\text{a}}\cdot\mathscr{J}_1\left(\text{a}\cdot x\right)\right]_{\left(\text{s}\right)}=\frac{1}{\text{s}^3}\cdot\frac{1}{\left(1+\left(\frac{\text{a}}{\text{s}}\right)^2\right)^\frac{3}{2}}\tag6$$
Ahora, que te deje probar:
$$\frac{1}{\text{s}^3}\cdot\frac{1}{\left(1+\left(\frac{\text{a}}{\text{s}}\right)^2\right)^\frac{3}{2}}=\frac{1}{\left(\text{s}^2+\text{a}^2\right)^\frac{3}{2}}\tag7$$