En mi intento de resolver esta integral impropia, empleados de una conocida incorrecto integral (parte de la Borwein de la familia de las integrales):
$$ \int_{0}^{\infty} \frac{\sin\left(\frac{x}{1}\right)\sin\left(\frac{x}{3}\right)\sin\left(\frac{x}{5}\right)}{\left(\frac{x}{1}\right)\left(\frac{x}{3}\right)\left(\frac{x}{5}\right)} \: dx = \frac{\pi}{2}$$
Para empezar, he hecho un simple reordenamiento
$$ \int_{0}^{\infty} \frac{\sin\left(\frac{x}{1}\right)\sin\left(\frac{x}{3}\right)\sin\left(\frac{x}{5}\right)}{x^3} \: dx = \frac{\pi}{30}$$
A partir de aquí he utilizado el Seno/Coseno Identidades
$$ \int_{0}^{\infty} \frac{\frac{1}{4}\left(-\sin\left(\frac{7}{15}x\right)+ \sin\left(\frac{13}{15}x\right) + \sin\left(\frac{17}{15}x\right) -\sin\left(\frac{23}{15}x\right) \right)}{x^3} \: dx = \frac{\pi}{30}$$
Que, al expandirse, se convierte en
$$ -\int_{0}^{\infty} \frac{\sin\left(\frac{7}{15}x\right)}{x^3}\:dx + \int_{0}^{\infty} \frac{\sin\left(\frac{13}{15}x\right)}{x^3}\:dx + \int_{0}^{\infty} \frac{\sin\left(\frac{17}{15}x\right)}{x^3}\:dx - \int_{0}^{\infty} \frac{\sin\left(\frac{23}{15}x\right)}{x^3}\:dx = \frac{2\pi}{15}$$
El uso de la propiedad
$$\int_{0}^{\infty}\frac{\sin(ax)}{x^3}\:dx = a^2 \int_{0}^{\infty}\frac{\sin(x)}{x^3}\:dx$$
Podemos reducir nuestra expresión para
$$\left[ -\left(\frac{7}{15}\right)^2 + \left(\frac{13}{15}\right)^2 + \left(\frac{17}{15}\right)^2 - \left(\frac{23}{15}\right)^2\right] \int_{0}^{\infty} \frac{\sin(x)}{x^3}\:dx = \frac{2\pi}{15}$$
Que se simplifica a
$$ -\frac{120}{15^2}\int_{0}^{\infty} \frac{\sin(x)}{x^3}\:dx = \frac{2\pi}{15}$$
Y desde que llegamos a
$$\int_{0}^{\infty} \frac{\sin(x)}{x^3}\:dx = -\frac{\pi}{4}$$
Es esto correcto? No estoy seguro, pero cuando me conecte en Wolframalpha se mantiene el tiempo de espera...