Sea $|z| < 1$ y considerar:
$$\overline{f(0)} = \frac{1}{2\pi}\int_0^{2\pi}\frac{e^{i\phi}}{e^{i \phi}-z}\overline{f(e^{i\phi})}d\phi$$
Expandir f como una serie de potencias centrada en cero.
Entonces $\overline{f(0)} = \overline{a_0}$ y obtenemos:
$$\overline{a_0} = \frac{1}{2\pi}\int_0^{2\pi}\frac{e^{i\phi}}{e^{i \phi}-z}\overline{a_0 + a_1e^{i\phi} + a_2e^{2i\phi} + ...}\;\;d\phi$$
$$\;\;\;\;\;\;\;\;\;\; =\frac{1}{2\pi}\int_0^{2\pi}\frac{e^{i\phi}}{e^{i \phi}-z}\bar{a_0} + \bar{a_1}e^{-i\phi} + \bar{a_2}e^{-2i\phi} + ...\;\;d\phi$$
$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =\frac{1}{2\pi}\int_0^{2\pi}\frac{1}{e^{i \phi}-z}\bar{a_0}e^{i\phi} + \bar{a_1} + \bar{a_2}e^{-i\phi} + \bar{a_3}e^{-2i\phi}+...\;\;d\phi$$
$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac{\bar{a_0}}{2\pi}\int_0^{2\pi}\frac{e^{i\phi}}{e^{i \phi}-z}d\phi + \frac{1}{2\pi}\sum_{n=0}^{\infty}\int_0^{2\pi}\frac{\overline{a_{n+1}}}{e^{i \phi}-z}e^{-ni\phi}d\phi$$
$$\;\;\;\;\;\;\;\;\;=\frac{\bar{a_0}}{2\pi i}\int_{\alpha}\frac{d\zeta}{\zeta-z}d\zeta + \frac{1}{2\pi}\sum_{n=0}^{\infty}\int_0^{2\pi}\frac{\overline{a_{n+1}}}{e^{i \phi}-z}e^{-ni\phi}d\phi$$
$$=\bar{a_0} + \frac{1}{2\pi}\sum_{n=0}^{\infty}\overline{a_{n+1}}\int_0^{2\pi}\frac{1}{e^{i \phi}-z}e^{-ni\phi}d\phi.$$
Ahora tenemos que demostrar que para todo $n\geq 0$
$$\int_0^{2\pi}\frac{1}{e^{i \phi}-z}e^{-ni\phi}d\phi = 0.$$
Realizar la sustitución $u = e^{i\phi}$ obtenemos:
$$-i\int_{\alpha}\frac{1}{u^{n+1}(u-z)}du.$$
A partir de aquí se puede realizar una descomposición parcial de fracciones o utilizar el teorema del residuo para demostrarlo:
$$-i\int_{\alpha}\frac{1}{u^{n+1}(u-z)}du = 0.$$
Tenga en cuenta que $\alpha$ es la parametrización del círculo unitario.