$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\sum_{n\ =\ k + 1}^{\infty}{n - 1 \choose k}\pars{1 \over 3}^{n}:\ {\large ?}}$
$\Large\left.1\right)$ $$ \mbox{We'll use the identity}\quad \bbox[10px,border:1px dotted black]{\ds{{s \choose \ell} = \oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{s} \over z^{\ell + 1}} \,{\dd z \over 2\pi\ic}}} $$
\begin{align} &\sum_{n\ =\ k + 1}^{\infty}{n - 1 \choose k}\pars{1 \over 3}^{n} =\sum_{n\ =\ k + 1}^{\infty}\bracks{% \oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 1} \over z^{k + 1}}\,{\dd z \over 2\pi\ic}} \pars{1 \over 3}^{n} \\[3mm]&={1 \over 3}\oint_{\verts{z}\ =\ 1}{1 \over z^{k + 1}}\bracks{% \sum_{n\ =\ k + 1}^{\infty}{\pars{1 + z \over 3}^{n - 1}}}\,{\dd z \over 2\pi\ic} \\[3mm]&={1 \over 3}\oint_{\verts{z}\ =\ 1}{1 \over z^{k + 1}}\bracks{% {\pars{1 + z}^{k}/3^{k} \over 1 - \pars{1 + z}/3}}\,{\dd z \over 2\pi\ic} ={1 \over 3^{k}}\,\half\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{k} \over z^{k + 1}} {1 \over 1 - z/2}\,{\dd z \over 2\pi\ic} \\[3mm]&={1 \over 3^{k}}\,\half\oint_{\verts{z}\ =\ 1} {\pars{1 + z}^{k} \over z^{k + 1}}\sum_{n = 0}^{\infty}\pars{z \over 2}^{n} \,{\dd z \over 2\pi\ic} ={1 \over 3^{k}}\,\half\sum_{n = 0}^{\infty}{1 \over 2^{n}}\oint_{\verts{z}\ =\ 1} {\pars{1 + z}^{k} \over z^{k - n+ 1}} \,{\dd z \over 2\pi\ic} \\[3mm]&={1 \over 3^{k}}\,\half\sum_{n = 0}^{k}{1 \over 2^{n}}{k \choose k - n} ={1 \over 3^{k}}\,\half\sum_{n = 0}^{k}{k \choose n}\pars{1 \over 2}^{n} ={1 \over 3^{k}}\,\half\pars{1 + \half}^{k} ={1 \over 2^{k + 1}} \end{align} $$ \bbox[10px,border:1px dotted black]{\ds{% \sum_{n\ =\ i + 1}^{\infty}{n - 1 \choose i}\pars{1 \over 3}^{n} = {1 \over 2^{i + 1}}}} $$
$\Large\left.2\right)$ \begin{align} \sum_{n\ =\ i + 1}^{\infty}{n - 1 \choose i}\pars{1 \over 3}^{n} & = \sum_{n\ =\ 0}^{\infty}{n + i \choose i}\pars{1 \over 3}^{n + i + 1} = \pars{1 \over 3}^{i + 1} \sum_{n\ =\ 0}^{\infty}{n + i \choose n}\pars{1 \over 3}^{n} \\[5mm] & = \pars{1 \over 3}^{i + 1} \sum_{n\ =\ 0}^{\infty}\bracks{{-i - 1 \choose n}\pars{-1}^{n}} \pars{1 \over 3}^{n} \\[5mm] & = \pars{1 \over 3}^{i + 1} \sum_{n\ =\ 0}^{\infty}{-i - 1 \choose n}\pars{-\,{1 \over 3}}^{n} = \pars{1 \over 3}^{i + 1}\bracks{1 + \pars{-\,{1 \over 3}}}^{-i - 1} \\[5mm] & = \bbox[10px,border:1px dotted black]{\ds{1 \over 2^{i + 1}}} \end{align}
0 votos
es.wikipedia.org/wiki/Serie_binomial#Casos_especiales
0 votos
@GrigoryM ¿Podrías dar más información sobre cómo aplicar esto? Mi suma no empieza en 0 y no veo cómo cambiar el índice para que se ajuste a la variante..
0 votos
Utiliza la identidad de pascales para que la suma parta de cero.
0 votos
@SandeepSilwal ¿Pero qué pasa con el exponente?
0 votos
Factor (1/3)^(i+1)