$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{1}{x\ln\pars{x} \over 1 + x^{2}}\,\dd x &
\,\,\,\stackrel{x\ \to\ x^{\large 1/2}}{=}\,\,\,
{1 \over 4}\int_{0}^{1}{\ln\pars{x} \over 1 + x}\,\dd x
\,\,\,\stackrel{x\ \to\ -x}{=}\,\,\,
-\,{1 \over 4}\int_{0}^{-1}{\ln\pars{-x} \over 1 - x}\,\dd x
\\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\,
{1 \over 4}\int_{0}^{-1}{-\ln\pars{1 - x} \over x}\,\dd x =
{1 \over 4}\int_{0}^{-1}\mrm{Li}_{2}'\pars{x}\,\dd x =
{1 \over 4}\,\mrm{Li}_{2}\pars{-1}
\\[5mm] & =
{1 \over 4}\,\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over n^{2}} =
{1 \over 4}\,\sum_{n = 1}^{\infty}\braces{%
{1 \over \pars{2n}^{2}} - \bracks{{1 \over n^{2}} - {1 \over \pars{2n}^{2}}}}
\\[5mm] & =
-\,{1 \over 8}\ \underbrace{\sum_{n = 1}^{\infty}{1 \over n^{2}}}
_{\ds{\pi^{2} \over 6}}\ =\
\bbx{-\,{\pi^{2} \over 48}}
\end{align}