Evaluar$\int_0^{2\pi} \frac 1{\sin^4x+\cos^4x}dx$
Mi intento:
$I=\int_0^{2\pi}\frac 1{\sin^4x+\cos^4x}dx=\int_0^{2\pi}\frac 1{(\sin^2x+\cos^2x)^2-2\sin^2(2x)}dx=\int_0^{2\pi}\frac {1}{1-2\sin^2(2x)}dx=\frac 12\int_0^{4\pi}\frac 1{1-2\sin^2(x)}dx=\frac 12 \int_0^{4\pi}\frac {1}{\cos(\frac{x}2)}dx=\int_0^{2\pi}\frac 1{\cos x}dx=0$
Así que en realidad es:
PS
Ahora, si trato de hacer la sustitución$$I=2\int_0^{2\pi}\frac {1}{2-\sin^2(2x)}dx=\int_0^{4\pi}\frac{1}{2-\sin^2(x)}dx=\int_0^{4\pi}\frac 1{1+\cos^2x}dx$, obtengo la integral de$u=\tan(\frac x2)$ a$0$ ... ¿Por qué?
¿Que estoy haciendo mal?