Tenemos <span class="math-container">$$\sqrt{d} = \frac{x}{y} - \frac{1}{f_0\cdot y} - \frac{1}{f_0\cdot f_1\cdot y}- \ldots - \frac{1}{f_0\cdot f_1\cdot\ldots\cdot f_n\cdot y}-\ldots\,,$ $</span> donde <span class="math-container">$ de $$f0 = 2x\,,$</span> <span class="math-container">$$f{n+1} = (f_n)^2 - 2\text{ for }n=0,1,2,\ldots,$ $</span> y <span class="math-container">$x$</span> y <span class="math-container">$y$</span> son soluciones no triviales para la ecuación de Pell <span class="math-container">$x^2 - d\cdot y^2 = 1$</span>.
Por ejemplo:
<span class="math-container">$$\sqrt{5} = 9/4 - 1/72 - 1/23184 - 1/2043763488 -\ldots\,.$$</span>