Considere la función$f:\mathbb{R}^2 \rightarrow \mathbb{R}$ dada por $$ f (x, y) = \begin{cases} \frac{xy}{x^2+y^2} &\text{if} (x,y)\neq (0,0)\\ 0 &\text{if} (x,y)=(0,0) \end {casos} $$ ¿Para qué vectores$v=(v_1,v_2)\neq(0,0)\in\mathbb{R}^2$ existe el derivado direccional$D_vf(0,0)$? Evaluar el derivado direccional donde quiera que exista.
He logrado reducir esto a$$D_vf(0,0)=\lim_{h\to 0}\frac{v_1v_2}{h(v_1^2+v_2^2)}$$ and as far as I'm aware this can only exist if one of $ v_1$ or $ v_2$ is $ 0$, but not both by the original condition. If this is the case does that mean the directional derivative only exits for $ v = (v_1,0) \; \ text {o} \; v = (0, v_2)$? If that is the case, how would I find the value of the directional derivative as it comes down to $ D_vf (0,0) = \ frac {0} {0} $?