$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Para los 'grandes'$\ds{n, p\ \mbox{and}\ n - p}$,
$\ds{{n \choose p} \sim 2^{n}\exp\pars{-\,{\bracks{p - n/2}^{2} \over n/2}}}$.
Usted puede utilizar el $\ds{\bbox[#dfd,5px]{\ Laplace\ Method\ for\ Sums\ }}$ ( ver página $761$ $\ds{\bbox[#fdd,5px]{\ Analytic\ Combinatorics\ }}$ por Philippe Flajolet y Robert Sedgewick, Cambridge University Press $2009$ )
\begin{align}
{1 \over 2^{n}}\sum_{p = k}^{n}{n \choose p} & \sim
{1 \over 2^{n}}
\bracks{\int_{k}^{n}{n \choose n/2}\exp\pars{-\bracks{p - n/2}^{2} \over n/2}\,\dd p}
\\[5mm] & \sim
{1 \over 2^{n}}\,{n \choose n/2}{\root{2} \over 2}\,n^{1/2}\int_{\pars{k -n/2}/\root{n/2}}^{\infty}\exp\pars{-p^{2}}\,\dd p
\\[5mm] & =
{\root{2\pi} \over 4}\,{n \choose n/2}\,{n^{1/2} \over 2^{n}}\bracks{1 + \,\mrm{erf}\pars{n - 2k \over \root{2}\root{n}}}
\quad \mbox{as}\ n \to \infty
\end{align}
donde $\ds{\,\mrm{erfc}\pars{z} \equiv {2 \over \root{\pi}}\int_{0}^{z}\expo{-x^{2}}\,\dd x}$ es la
Función De Error.