Supongo que te refieres a que "$\lim_{x\to+\infty} f(x)=t$ existe y $ \lim_{x\to+\infty} f'''(x)=0$".
Usando el teorema de Taylor, podemos expresar$f(x)$ así:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2+\frac{f'''(\xi)}{6}(x-a)^3,$$ which $ a$ is a real constant, and $ \ xi$ is between $ x$ and $ a $.
Sea$x=a+1$, obtenemos$$f(a+1)=f(a)+f'(a)+\frac{f''(a)}{2}+\frac{f'''(\xi)}{6},$$which $ a <\ xi <a + 1$.Then,let $ a \ to + \ infty$,we obtain $ t = t + \ lim_ {x \ a + \ infty} [f '(x) + f' '(x) / 2]$,i.e.,$$\lim_{x\to+\infty}[2f'(x)+f''(x)]=0.$ $
Luego, de manera similar, vamos a$x=a-1$ y$a\to+\infty$, obtenemos$$\lim_{x\to+\infty}[-2f'(x)+f''(x)]=0.$ $
Entonces,$$\lim_{x\to+\infty}[2f'(x)+f''(x)]+\lim_{x\to+\infty}[-2f'(x)+f''(x)]=2\lim_{x\to+\infty}f''(x)=0,$$and$$\lim_{x\to+\infty}[2f'(x)+f''(x)]-\lim_{x\to+\infty}f''(x)=2\lim_{x\to+\infty}f'(x)=0.$ $