$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\mrm{I}\pars{p,q} & \equiv
\int_{0}^{1}\bracks{x^{p} − x^{q} \over \ln\pars{x}}^{2}\,\dd x =
\int_{0}^{1}\pars{x^{2p} − 2x^{p + q} + x^{2q}}\
\overbrace{\int_{0}^{\infty}x^{t}\,
t\,\dd t}^{\ds{{1 \over \ln^{2}\pars{x}}}}\ \,\dd x
\\[5mm] & =
\int_{0}^{\infty}t\int_{0}^{1}
\pars{x^{2p + t} - 2x^{p + q + t} + x^{2q + t}}\,\dd x\,\dd t
\\[5mm] & =
\int_{0}^{\infty}\pars{{t \over t + 2p + 1} -
2\,{t \over t + p + q + 1} + {t \over t + 2q + 1}}\,\dd t
\\[5mm] & =
\int_{0}^{\infty}\pars{-\,{2p + 1 \over t + 2p + 1} +
{2\pars{p +q + 1} \over t + p + q + 1} - {2q + 1 \over t + 2q + 1}}\,\dd t
\\[5mm] & =
\left.\ln\pars{\bracks{t + p + q + 1}^{2p + 2q + 2} \over
\bracks{t + 2p + 1}^{2p + 1}\bracks{t + 2q + 1}^{2q + 1}}
\right\vert_{\ t\ =\ 0}^{\ t\ \to\ \infty}
\\[5mm] & =
\bbx{\ln\pars{ \bracks{2p + 1}^{2p + 1}\bracks{2q + 1}^{2q + 1}\over
\bracks{p + q + 1}^{2p + 2q + 2}}}
\end{align}