Después de pasar un montón de tiempo he llegado a la respuesta (no sin la ayuda de la "MathStackExchangians"). Voy a continuar con la derivación por Larry a partir de $I_2$.
Voy a utilizar la siguiente integral:
$$\int_0^\pi x^2\cos(2kx)~dx=\frac\pi{2k^2}$$
Tenemos
$$\pequeño\begin{align}
I_2 &= 32\int_{0}^{\pi}x^2\ln^2(\sin x)~dx\\
&= 32\int_{0}^{\pi}x^2\left(\ln(2)+\sum_{n=1}^{\infty}\frac{\cos (2nx)}{n}\right)^2~dx\\
&= 32\int_{0}^{\pi}x^2\ln^2(2)~dx+64\ln(2)\int_{0}^{\pi}x^2\sum_{n=1}^{\infty}\frac{\cos (2nx)}{n}~dx+32\int_{0}^{\pi}x^2\left(\sum_{n=1}^{\infty}\frac{\cos (2nx)}{n}\right)^2~dx\\
&=\frac{32}{3}\pi^3\ln^2(2)+\sum_{n=1}^{\infty}\frac{64\ln(2)}{n}\int_{0}^{\pi}x^2\cos(2nx)~dx+32\underbrace{\int_{0}^{\pi}x^2\left(\sum_{n=1}^{\infty}\frac{\cos (2nx)}{n}\right)^2~dx}_{J}
\end{align}$$
$$\pequeño\begin{align}
J &= \int_{0}^{\pi}x^2\left(\sum_{n=1}^{\infty}\frac{\cos (2nx)}{n}\right)^2~dx\\
&=\int_{0}^{\pi}x^2\left(\sum_{n=1}^{\infty}\frac{\cos^2 (2nx)}{n^2}+\sum_{m,n=1;m\neq n}^{\infty}\frac{\cos (2mx)\cos (2nx)}{mn}\right)~dx\\
&=\sum_{n=1}^{\infty}\frac1{n^2}\int_{0}^{\pi}x^2\cos^2 (2nx)~dx+\sum_{m,n=1;m\neq n}^{\infty}\frac1{mn}\int_{0}^{\pi}x^2\cos (2mx)\cos (2nx)~dx\\
&=\sum_{n=1}^{\infty}\frac1{2n^2}\int_{0}^{\pi}x^2(1+\cos (4nx))~dx+\sum_{m,n=1;m\neq n}^{\infty}\frac1{2mn}\int_{0}^{\pi}x^2(\cos (2(m+n)x)+\cos (2(m-n)x))~dx\\
&=\sum_{n=1}^{\infty}\frac1{2n^2}\left(\int_{0}^{\pi}x^2~dx+\int_{0}^{\pi}x^2\cos (4nx)~dx\right)+\sum_{m,n=1;m\neq n}^{\infty}\frac1{2mn}\left(\int_{0}^{\pi}x^2\cos (2(m+n)x)~dx+\int_{0}^{\pi}x^2\cos (2(m-n)x)~dx\right)\\
&=\sum_{n=1}^{\infty}\frac1{2n^2}\left(\frac{\pi^3}3+\frac\pi{2(2n)^2}\right)+\sum_{m,n=1;m\neq n}^{\infty}\frac1{2mn}\left(\frac\pi{2(m+n)^2}+\frac\pi{2(m-n)^2}\right)\\
&=\frac{\pi^3}6\sum_{n=1}^{\infty}\frac1{n^2}+\frac\pi{16}\sum_{n=1}^{\infty}\frac1{n^4}+\frac\pi2\sum_{m,n=1;m\neq n}^{\infty}\frac{m^2+n^2}{mn(m^2-n^2)^2}\\
&=\frac{\pi^3}6\frac{\pi^2}6+\frac{\pi}{16}\frac{\pi^4}{90}+\frac\pi2\frac{11\pi^4}{720}=\frac{13\pi^5}{360}
\end{align}
$$
La última suma es evaluado (mi agradecimiento a Robert Z y Zvi) en esta pregunta
Finalmente tenemos
$$\pequeño\begin{align}
I_2 &= \frac{32}{3}\pi^3\ln^2(2)+\sum_{n=1}^{\infty}\frac{64\ln(2)}{n}\int_{0}^{\pi}x^2\cos(2nx)~dx+32\frac{13\pi^5}{360}\\
&= \frac{32}{3}\pi^3\ln^2(2)+\sum_{n=1}^{\infty}\frac{64\ln(2)}{n}\frac\pi{2n^2}+\frac{52\pi^5}{45}\\
&=\frac{32}{3}\pi^3\ln^2(2)+32\ln(2)\pi\sum_{n=1}^{\infty}\frac1{n^3}+\frac{52\pi^5}{45}\\
&= \pi^3\ln^2(2)+32\pi\ln(2)\zeta(3)+\frac{52\pi^5}{45}
\end{align}$$
Y así
$$\begin{align}
I&=I_1+I_2\\
&= -8\pi^3\ln^2(2)-16\pi\ln(2)\zeta(3)+\frac{32}{3}\pi^3\ln^2(2)+32\pi\ln(2)\zeta(3)+\frac{52\pi^5}{45}\\
&= 16\pi\zeta(3)\ln(2)+\frac{8\pi^3\ln^2(2)}{3}+\frac{52\pi^5}{45}
\end{align}$$