4 votos

¿Cómo puedo demostrar que $f_n$ = $\frac 1n\sum\limits_{i=1}^{n^2} e^{ikt}$ converge débilmente a $0$ en $L^2[-π,π] $

¿Cómo puedo demostrar que $$ f_n=\frac{1}{n}\sum\limits_{k=1}^{n^2} e^{ikt} $$ converge débilmente a $0$ en $L^2[-,] $ y que la secuencia
$$ \left\Vert \frac{1}{n}(f_1+f_2+...+f_n)\right\Vert_2 $$ no converge a $0$ ?

Gracias de antemano.

5voto

mona Puntos 38

Para demostrar la primera parte necesitamos algunas estimaciones. Afirmamos que la secuencia $\{f_n:n\in\mathbb{N}\}$ está acotado por la norma. En efecto, $$ \Vert f_n\Vert^2=\langle f_n, f_n\rangle= \frac{1}{n^2}\sum\limits_{k=1}^{n^2}\sum\limits_{m=1}^{n^2}\langle e^{ikt}, e^{imt}\rangle= \frac{1}{n^2}\sum\limits_{k=1}^{n^2}\sum\limits_{m=1}^{n^2}\int\limits_{[-\pi,\pi]} e^{ikt} e^{-imt}d\mu(t)= $$ $$ \frac{1}{n^2}\sum\limits_{k=1}^{n^2}\sum\limits_{m=1}^{n^2}2\pi \delta_{k,m}= \frac{1}{n^2}2\pi n^2=2\pi $$ Ahora bien, hay que tener en cuenta que para todos los $r\in\mathbb{N}$ tenemos $$ \lim\limits_{n\to\infty}\langle f_n, e^{irt}\rangle= \lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\langle e^{ikt}, e^{irt}\rangle= \lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n2\pi \delta_{n,r}= \lim\limits_{n\to\infty}\frac{2\pi}{n}=0 $$ Desde $\mathrm{span}\{e^{irt}:r\in\mathbb{N}\}$ es denso en $L^2([-\pi,\pi])$ y la secuencia $\{f_n:n\in\mathbb{N}\}$ está acotado por la norma, entonces tenemos $\lim\limits_{n\to\infty}\langle f_n, f\rangle=0$ para todos $f\in L^2([-\pi,\pi])$ . La última afirmación significa que $f_n$ converge débilmente a $0$ en $L^2([-\pi,\pi])$ .

Ahora pasamos a la segunda parte. Denotemos $$ F_n=\frac{1}{n}\sum\limits_{k=1}^n f_k $$ Para todos $k,m\in\{1,\ldots,n\}$ tenemos $$ \langle f_k, f_m\rangle= \frac{1}{km}\sum\limits_{r=1}^{k^2}\sum\limits_{s=1}^{m^2}\langle e^{irt},e^{ist}\rangle= \frac{1}{km}\sum\limits_{r=1}^{k^2}\sum\limits_{s=1}^{m^2}\int\limits_{[-\pi,\pi]}e^{irt}e^{-ist}d\mu(t)= $$ $$ \frac{1}{km}\sum\limits_{r=1}^{k^2}\sum\limits_{s=1}^{m^2}2\pi \delta_{r,s}=\frac{2\pi}{km}\min(k^2,m^2) $$ Por lo tanto, la norma deseada es $$ \Vert F_n\Vert^2=\langle F_n,F_n\rangle= \frac{1}{n^2}\sum\limits_{k=1}^n\sum\limits_{m=1}^n\langle f_k, f_m\rangle= \frac{1}{n^2}\sum\limits_{k=1}^n\sum\limits_{m=1}^n\frac{2\pi}{km}\min(k^2,m^2) $$ $$ \frac{2\pi}{n^2}\left(\sum\limits_{k=1}^n\sum\limits_{m=1}^{k-1}\frac{m^2}{km}+\sum\limits_{k=1}^n\frac{k^2}{kk}+\sum\limits_{m=1}^n\sum\limits_{k=1}^{m-1}\frac{k^2}{km}\right)= \frac{2\pi}{n^2}\left(\sum\limits_{k=1}^n\frac{1}{k}\sum\limits_{m=1}^{k-1}m+n+\sum\limits_{m=1}^n\frac{1}{m}\sum\limits_{k=1}^{m-1}k\right)= $$ $$ \frac{2\pi}{n^2}\left(\sum\limits_{k=1}^n\frac{k-1}{2}+n+\sum\limits_{m=1}^n\frac{m-1}{2}\right)= \frac{2\pi}{n^2}\left(\frac{n^2-n}{4}+n+\frac{n^2-n}{4}\right)= \pi\left(1+\frac{1}{n}\right) $$ Lo que da lugar a $$ \lim\limits_{n\to\infty}\Vert F_n\Vert=\lim\limits_{n\to\infty}\sqrt{\pi\left(1+\frac{1}{n}\right)}=\sqrt{\pi} $$

2voto

Studer Puntos 1050

Se puede conseguir otra prueba utilizando el isomorfismo $L^2[-\pi,\pi]\simeq\ell^2(\mathbb{N})$ donde se mapea $e^{ikt}\mapsto \delta_k$ (hay un factor $\sqrt{2\pi}$ alrededor, pero afecta a la convergencia o no a cero).

Entonces, para cualquier $a\in\ell^2(\mathbb{N})$ , arreglar $\varepsilon>0$ y elija $M$ tal que $\sum_{k>M}|a_k|^2<\varepsilon^2$ . Entonces, usando Hölder, $$ |\langle f_n,a\rangle|=\frac1n\,\left|\sum_{k=1}^{n^2}a_k\right| \leq\frac1n\,\sum_{k=1}^{n^2}|a_k| =\frac1n\,\sum_{k=1}^{M}|a_k|+\frac1n\,\sum_{k=M+1}^{n^2}|a_k| \leq\frac1n\,\sum_{k=1}^{M}|a_k|\\ +\frac1n\,\left(\sum_{k=M+1}^{n^2}|a_k|^2\right)^{1/2}(n^2-M)^{1/2} \\ \leq\frac1n\,\sum_{k=1}^{M}|a_k|+\varepsilon.$$ Dejar $n\to\infty$ obtenemos $\limsup_n|\langle f_n,a\rangle|<\varepsilon$ y como $\varepsilon$ era arbitraria, obtenemos $\lim_n\langle f_n,a\rangle=0$ .

Para la secuencia $\frac1n(f_1+\cdots+f_n)$ podemos estimar: $$ \|\frac1n(f_1+\cdots+f_n)\|_2^2=\left\|\frac1n\,\sum_{j=1}^n\sum_{k=1}^{j^2}\frac{\delta_k}j\right\|_2^2=\left\langle\frac1n\,\sum_{j=1}^n\sum_{k=1}^{j^2}\frac{\delta_k}j,\frac1n\,\sum_{j=1}^n\sum_{k=1}^{j^2}\frac{\delta_k}j\right\rangle\\ =\frac1{n^2}\sum_{j=1}^n\sum_{k=1}^{j^2}\sum_{l=1}^n\sum_{h=1}^{l^2}\frac{\langle\delta_k,\delta_h\rangle}{lj} =\frac1{n^2}\sum_{j=1}^n\sum_{l=1}^{n}\frac{\min\{l^2,j^2\}}{lj}\\ =\frac1{n^2}\sum_{j=1}^n\sum_{l=1}^{j}\frac{\min\{l^2,j^2\}}{lj} +\frac1{n^2}\sum_{j=1}^n\sum_{l=j+1}^{n}\frac{\min\{l^2,j^2\}}{lj} =\frac1{n^2}\sum_{j=1}^n\sum_{l=1}^{j}\frac{l^2}{lj} +\frac1{n^2}\sum_{j=1}^n\sum_{l=j+1}^{n}\frac{j^2}{lj}\\ =\frac1{n^2}\sum_{j=1}^n\sum_{l=1}^{j}\frac{l}{j} +\frac1{n^2}\sum_{j=1}^n\sum_{l=j+1}^{n}\frac{j}{l} =\frac1{n^2}\sum_{j=1}^n\frac{j(j+1)}{2j} +\frac1{n^2}\sum_{l=1}^n\sum_{j=1}^{l-1}\frac{j}l\\ =\frac1{n^2}\sum_{j=1}^n\frac{j+1}{2} +\frac1{n^2}\sum_{l=1}^n\frac{(l-1)l}{2l} =\frac1{n^2}\sum_{j=1}^n\frac{j+1}{2} +\frac1{n^2}\sum_{l=1}^n\frac{l-1}2\\ =\frac1{n^2}\sum_{k=1}^nk=\frac{n(n+1)}{2n^2}=\frac12+\frac1{2n} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X