\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
\begin{align}
M & = \pars{\begin{array}{cc}
\ds{1 \over \root{2}} & \ds{1 \over \root{2}}
\\
\ds{-\,{1 \over \root{2}}} & \ds{1 \over \root{2}}
\end{array}} & =
{1 \over \raíz{2}}\llaves{\overbrace{\pars{\begin{array}{cc}
\ds{1} & \ds{0}
\\
\ds{0} & \ds{1}
\end{array}}}^{\ds{\sigma_{0}}} + \ic\ \overbrace{%
\pars{\begin{array}{cc}
\ds{0} & \ds{-\ic}
\\
\ds{\ic} & \ds{0}
\end{array}}}^{\ds{\sigma_{y}}}} =
2^{-1/2}\pars{\sigma_{0} + \ic\sigma_{y}}
\end{align}
Tenga en cuenta que
σ0σy=σyσ0yσ20=σ2y=σ0
tal que
\begin{align}
\exp\pars{2^{-1/2}\pars{\sigma_{0} + \ic\sigma_{y}}\lambda} & =
\exp\pars{2^{-1/2}\lambda}\exp\pars{2^{-1/2}\ic\sigma_{y}\lambda}
\\[3mm] & =
\exp\pars{\lambda \over \root{2}}\bracks{\cos\pars{\lambda \over \root{2}} +
\sin\pars{\lambda \over \root{2}}\ic\sigma_{y}}
\\[3mm] & =
\half\pars{1 + \sigma_{y}}\exp\pars{{1 + \ic \over \root{2}}\,\lambda} +
\half\pars{1 - \sigma_{y}}\exp\pars{{1 - \ic \over \root{2}}\,\lambda}
\\[3mm] & =
\half\pars{1 + \sigma_{y}}\exp\pars{\expo{\pi\ic/4}\lambda} +
\half\pars{1 - \sigma_{y}}\exp\pars{\expo{-\pi\ic/4}\lambda}
\end{align}
M2006=\bracks2−1/2\parsσ0+\icσy2006=2006!\bracksλ2006exp\parsA2−1/2\bracksσ0+\icσyλ=\half\pars1+σy\bracksexp\parsπ4\ic2006+\half\pars1−σy\bracksexp\pars−π4\ic2006=\half\pars\ds1\ds−\ic\ds\ic\ds1\pars−\ic+\media\pars\ds1\ds\ic\ds−\ic\ds1\ic=\pars\ds0\ds−1\ds1\ds0