El valor de$\dfrac{2^2+1}{2^2-1}+\dfrac{3^2+1}{3^2-1}...+\dfrac{2011^2+1}{2011^2-1}$ es:
- En el intervalo$(2010,2010\frac{1}{2})$
- En el intervalo$(2011-1/2011,2011-1/2012)$
- En el intervalo$(2011,2011\frac{1}{2})$
- En el intervalo$(2012,2012\frac{1}{2})$
Lo estoy mirando pero no veo ningún truco para resolverlo.
Creo que hay algún truco como el de la forma$a^2+b^2/(a-b)(a+b)$.