Escriba su suma de esta manera
$$
\eqalign{
& \sum\limits_{n = 0}^\infty {\sum\limits_{m = 0}^\infty {\sum\limits_{l = 0}^{\min \left( {n,m} \right)} {a_{\,l} \;b_{\,m - l} \;c_{\,n - l} } } } = \cr
& = \sum\limits_{\left( {l,m,n} \right)\; \en \;C} {a_{\,l} \;b_{\,m - l} \;c_{\,n - l} } \quad \left| {\;C = \left\{ {\left( {l,m,n} \right)} \right\}:\left\{ \matriz{
0 \le l \le \min (n,m) \hfill \cr
0 \le m \hfill \cr
0 \le n \hfill \cr} \right.} \right. \cr}
$$
Entonces
$$
\eqalign{
& \left\{ \matriz{
0 \le l \le \min (n,m) \hfill \cr 0 \le m \hfill \cr 0 \le n \hfill \cr} \right.
= \left\{ \matriz{
0 \le m < n \hfill \cr 0 \le l \le m \hfill \cr} \right.\;
\cup \;\left\{ \matriz{ 0 \le n \le m \hfill \cr 0 \le l \le n \hfill \cr} \right.
= \cr
& = \left\{ {0 \le l \le m < n} \right\}\; \cup \;\left\{ {0 \le l \le n \le m} \right\} = \cr
& = \left\{ \matriz{
0 \le l \hfill \cr 0 \le m - l < n - l \hfill \cr 1 \le n - l \hfill \cr} \right.\;\;
\cup \;\;\left\{ \matriz{
0 \le l \hfill \cr 0 \le n - l \le m - l \hfill \cr 0 \le m - l \hfill \cr} \right. \cr}
$$
y los dos conjuntos son cearly distintos.
A partir de entonces
$$
\eqalign{
& \sum\limits_{\left( {l,m,n} \right)\; \en \;C} {a_{\,l} \;b_{\,m - l} \;c_{\,n - l} }
= \sum\limits_{\left( {l,m,n} \right)\; \en \;C_{\,1} } {a_{\,l} \;b_{\,m - l} \;c_{\,n - l} } + \sum\limits_{\left( {l,m,n} \right)\; \en \;C_{\,2} } {a_{\,l} \;b_{\,m - l} \;c_{\,n - l} } = \cr
& = \sum\limits_{0\, \le \,l} {\;\sum\limits_{1\, \le \,k} {\;\sum\limits_{0\, \le \,j\, < \,k} {a_{\,l} \;b_{\,j} \;c_{\,k} } } }
+ \sum\limits_{0\, \le \,l} {\;\sum\limits_{0\, \le \,j} {\,\sum\limits_{0\, \le \,k\, \le \,j} {a_{\,l} \;b_{\,j} \;c_{\,k} } } } = \cr
& = \left( {\sum\limits_{0\, \le \,l} {a_{\,l} \;} } \right)\left( {\sum\limits_{1\, \le \,k} {\;c_{\,k} \sum\limits_{0\, \le \,j\, < \,k} {\;b_{\,j} \;} }
+ \sum\limits_{0\, \le \,j} {\,b_{\,j} \sum\limits_{0\, \le \,k\, \le \,j} {\;\;c_{\,k} } } } \right) = \cr
& = \left( {\sum\limits_{0\, \le \,l} {a_{\,l} \;} } \right)\left( {\sum\limits_{0\, \le \,j\, < \,k} {b_{\,j} \;c_{\,k} }
+ \sum\limits_{0\, \le \,k\, \le \,j} {b_{\,j} \;c_{\,k} } } \right) = \cr
& = \left( {\sum\limits_{0\, \le \,l} {a_{\,l} \;} } \right)\left( {\sum\limits_{0\, \le \,j\,,\,\,k} {b_{\,j} \;c_{\,k} } } \right) = \cr
& = \left( {\sum\limits_{0\, \le \,l} {a_{\,l} \;} } \right)\left( {\sum\limits_{0\, \le \,j} {b_{\,j} } } \right)
\left( {\sum\limits_{0\, \le \,\,k} {c_{\,k} } } \right) \cr}
$$
el resultado que podemos obtener también seguir manipulando
el conjunto de desigualdades anteriores.