Deje $a_n = (n!)^{\frac{1}{n^2}}$ .
Ahora, $$n! \geq1 \implies (n!)^{\frac{1}{n^2}} \geq 1$$ and $$n! \leq n^n \implies (n!)^{\frac{1}{n^2}} \leq n^{\frac1n}$ $
Pero $$\lim_{n \to \infty} n^{\frac1n} = 1 = \lim_{n \to \infty} 1$$ Thus by Sandwich Theorem $$\lim_{n \to \infty} (n!)^{\frac{1}{n^2}} =1$ $ ¿Es correcta la solución?