Demostrar que $$\frac{1+2\sin{\theta}\cos{\theta}}{\cos^2{\theta}-\sin^2{\theta}}=\frac{1+\tan{\theta}}{1-\tan{\theta}}$$
Este es mi intento $$\require{cancel}\text{Left - Right} = \frac{(1+2\sin{\theta}\cos{\theta})(1-\tan{\theta})-(1+\tan{\theta})(\cos^2{\theta}-\sin^2{\theta})}{(\cos^2{\theta}-\sin^2{\theta})(1-\tan{\theta})}= \frac{\cancel1\cancel{-\tan{\theta}}+2\sin^2{\theta}\cancel{+2\sin{\theta}\cos{\theta}}\cancel{-\cos^2{\theta}+\sin^2{\theta}}\cancel{-\sin{\theta}\cos{\theta}}\cancel{+\tan{\theta}}\cancel{-\sin{\theta}\cos{\theta}}}{(\cos^2{\theta}-\sin^2{\theta})(1-\tan{\theta})} =\frac{2\sin^2{\theta}}{(\cos^2{\theta}-\sin^2{\theta})(1-\tan{\theta})}$$ ¿Debería ser cero, pero no lo es? Aquí está la prueba: $$\text{Left}=\frac{\sin^2{\theta}+\cos^2{\theta}+2\sin{\theta}\cos{\theta}}{\cos^2{\theta}-\sin^2{\theta}}=\frac{(\sin{\theta}+\cos{\theta})^2}{(\cos{\theta}+\sin{\theta})(\cos{\theta}-\sin{\theta})}=\frac{\sin{\theta}+\cos{\theta}}{\cos{\theta}-\sin{\theta}} \\\text{Right}=\frac{1+\frac{\sin{\theta}}{\cos{\theta}}}{1-\frac{\sin{\theta}}{\cos{\theta}}}=\frac{\cos{\theta}+\sin{\theta}}{\cos{\theta}-\sin{\theta}} \\{\therefore}\text{Left=Right}$$
1 votos
En su intento, no ha expandido los paréntesis correctamente, y su cancelación es incorrecta: $-\cos^2\theta+\sin^2\theta$ no se cancela con $1$ (Considerando que $-\cos^2\theta-\sin^2\theta$ se anularía con $1$ )
1 votos
¿Por qué has cancelado $1-\cos^2(\theta)+\sin^2(\theta)$ ? Parece que aquí es donde te equivocaste [asume que has ampliado el derecho].
0 votos
Gracias a los dos, creo que ahí me equivoqué.