$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{2}^{\infty}{\ln^{3}\pars{x - 1} \over x^{2}}\,\dd x}$
\begin {align}& \color {#c00000}{ \int_ {2}^{ \infty }% { \ln ^{3} \pars {x - 1} \over x^{2}}\, \dd x} = \int_ {1}^{ \infty }{ \ln ^{3} \pars {x} \over \pars {x + 1}^{2}}\, \dd x = \int_ {1}^{0}{ \ln ^{3} \pars {1/x} \over \pars {1/x + 1}^{2}} \, \pars {-\,{ \dd x \over x^{2}}} \\ [3mm]&= \color {#00f}{- \int_ {0}^{1}{ \ln ^{3} \pars {x} \over \pars {1 + x}^{2}}\, \dd x} \end {align}
Con $\ds{0 < \epsilon < 1}$ : \begin {align}& \color {#00f}{- \int_ { \epsilon }^{1}% { \ln ^{3} \pars {x} \over \pars {1 + x}^{2}}\, \dd x} =-\,{ \ln ^{3} \pars { \epsilon } \over 1 + \epsilon } - \int_ { \epsilon }^{1}{1 \over 1 + x}\, \bracks {3 \ln ^{2} \pars {x}\,{1 \over x}}\, \dd x \\ [3mm]&=-\\N-\N-\N-\N-\N-ES. \ln ^{3} \pars { \epsilon } \over 1 + \epsilon } -3 \int_ { \epsilon }^{1}{ \ln ^{2} \pars {x} \over x}\, \dd x +3 \int_ { \epsilon }^{1}{ \ln ^{2} \pars {x} \over 1 + x}\, \dd x \\ [3mm]&=-\\N-\N-\N-\N-\N-ES. \ln ^{3} \pars { \epsilon } \over 1 + \epsilon } + \ln ^{3} \pars { \epsilon } +3 \int_ { \epsilon }^{1}{ \ln ^{2} \pars {x} \over 1 + x}\, \dd x \end {align}
Con el límite $\ds{\epsilon \to 0^{+}}$ : \begin {align}& \color {#66f}{ \large\int_ {2}^{ \infty }% { \ln ^{3} \pars {x - 1} \over x^{2}}\, \dd x} =3 \int_ {0}^{1}{ \ln ^{2} \pars {x} \over 1 + x}\, \dd x =-3 \int_ {0}^{1} \ln\pars {1 + x} \bracks {2 \ln\pars {x}\,{1 \over x}}\, \dd x \\ [3mm]&=-6 \int_ {0}^{-1} \ln\pars {-x}\,{ \ln\pars {1 - x} \over x}\, \dd x =6 \int_ {0}^{-1} \ln\pars {-x}{ \rm Li}_{2}' \pars {x}\, \dd x =-6 \int_ {0}^{-1}{{ \rm Li}_{2} \pars {x} \over x}\, \dd x \\ [3mm]&=-6 \int_ {0}^{-1}{ \rm Li}_{3}' \pars {x}\, \dd x =-6\,{ \rm Li}_{3} \pars {-1} =-6 \sum_ {n = 1}^{ \infty }{ \pars {-1}^{n} \over n^{3}} \\ [3mm]&=-6 \bracks { \sum_ {n = 1}^{ \infty }{1 \over \pars {2n}^{3}} - \sum_ {n = 1}^{ \infty }{1 \over \pars {2n - 1}^{3}}} =-6 \bracks { \sum_ {n = 1}^{ \infty }{1 \over \pars {2n}^{3}} - \sum_ {n = 1}^{ \infty }{1 \over n^{3}} + \sum_ {n = 1}^{ \infty }{1 \over \pars {2n}^{3}}} \\ [3mm]&=-6 \braces {2 \bracks {{1 \over 8} \sum_ {n = 1}^{ \infty }{1 \over n^{3}}} - \sum_ {n = 1}^{ \infty }{1 \over n^{3}}} ={9 \over 2} \sum_ {n = 1}^{ \infty }{1 \over n^{3}} = \color {#66f}{ \large {9 \over 2}\, \zeta\pars {3}} \approx { \tt 5.4093} \end {align}
$\ds{{\rm Li_{s}}\pars{z}}$ es el Función Polilogaritmo y utilizamos propiedades bien conocidas de ellos como se explica en el enlace citado anteriormente.