Evaluar %#% $ #%
Respuestas
¿Demasiados anuncios?Es necesario aplicar el principio de suma de Riemann.
$$\begin{align} \ & \lim\limits{n \to \infty } \left(\frac{1}{{n\sqrt {{n^2} + 1} }} + \frac{2}{{n\sqrt {{n^2} + 4} }} + \frac{3}{{n\sqrt {{n^2} + 9} }} + \cdots + \frac{n}{{n\sqrt {{n^2} + {n^2}} }}\right)\ & = \lim\limits{n \to \infty }\sum{r=1}^n \frac{r}{n\sqrt{n^2+r^2}} \ & = \lim\limits{n \to \infty }\sum{r=1}^n \frac{\frac{r}{n}}{n\sqrt{1+(\frac{r}{n})^2}}\ & = \lim\limits{n \to \infty } \frac{1}{n} \sum_{r=1}^n \frac{\frac{r}{n}}{\sqrt{1+(\frac{r}{n})^2}} \end {Alinee el} $$
Ahora Supongamos $\frac1n=h$. Entonces $h\to 0$ $n\to\infty$.
Por lo tanto obtenemos $$ \begin{align} \ & \lim\limits{n \to \infty } \frac{1}{n} \sum{r=1}^n \frac{\frac{r}{n}}{\sqrt{1+(\frac{r}{n})^2}}\ & = \lim\limits{n \to \infty } h \sum{r=1}^n \frac{rh}{\sqrt{1+(rh)^2}}\ & = \int_0^1 \frac{x}{\sqrt{1+x^2}}dx \ & = \frac{1}{2}\int_0^1 \frac{d(1+x^2)}{\sqrt{1+x^2}}dx \ & = \frac{1}{2}\cdot 2\sqrt{1+x^2}|_0^1 \ & = \color{red}{\sqrt2-1} \end{Alinee el} $$