$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{k = 0}^{n}{\pars{-1}^{k} \over 2k + 1}{n \elegir k} =
{4^{n} \\pars{2n + 1}{2n\elegir n}}:\ {\LARGE ?}}$.
\begin{align}
\sum_{k = 0}^{n}{\pars{-1}^{k} \over 2k + 1}{n \choose k} & =
\sum_{k = 0}^{n}\pars{-1}^{k}\pars{\int_{0}^{1}t^{2k}\dd t}{n \choose k} =
\int_{0}^{1}\bracks{\sum_{k = 0}^{n}{n \choose k}\pars{-t^{2}}^{k}}\dd t
\\[5mm] & =
\int_{0}^{1}\pars{1 - t^{2}}^{n}\dd t
\\[5mm] & \stackrel{t^{2}\ \mapsto\ t}{=}\,\,\,
{1 \over 2}\
\overbrace{\int_{0}^{1}t^{-1/2}\,\pars{1 - t}^{n}\,\dd t}
^{\ds{\mrm{B}\pars{1/2,n + 1}}}\qquad\pars{~\mrm{B}:\ Beta\ Function~}
\\[5mm] & =
{1 \over 2}\,{\Gamma\pars{1/2}\Gamma\pars{n + 1} \over \Gamma\pars{n + 3/2}}\qquad\pars{~\Gamma:\ Gamma\ Function~}
\\[5mm] & =
{1 \over 2}\,{\root{\pi}\Gamma\pars{n + 1} \over
\root{2\pi}2^{-3/2 - 2n}\Gamma\pars{2n + 2}/
\Gamma\pars{n + 1}}\label{1}\tag{1}
\end{align}
En la última expresión, yo solía $\ds{\Gamma\pars{1/2} = \root{\pi}}$ y el Gamma de la Duplicación de la Fórmula.
\eqref{1} se convierte en:
\begin{align}
\sum_{k = 0}^{n}{\pars{-1}^{k} \over 2k + 1}{n \choose k} & =
{4^{n}\pars{n!}^{2} \over \pars{2 n + 1}!} =
{4^{n} \over \pars{2n + 1}\bracks{\pars{2n}!/\pars{n!}^{2}}} =
\bbx{{4^{n} \over \pars{2n + 1}{2n \choose n}}}
\end{align}