\begin{align*}
I&=\int_0^1 \frac{\sqrt{x}\ln x} {x^2-x+1}\,dx
\end{align*}
Realizar el cambio de variable $y=\sqrt{x}$,
\begin{align*}
J&=4\int_0^1 \frac{x^2\ln x} {x^4-x^2+1}\,dx\\
&=\left[\left(\frac{1}{\sqrt{3}}\ln\left(\frac{x^2-\sqrt{3}x+1}{x^2+\sqrt{3}x+1}\right)+2\arctan\left(\frac{x}{1-x^2}\right)\right)\ln x\right]_0^1-\\
&\int_0^1 \frac{1}{x\sqrt{3}}\ln\left(\frac{x^2-\sqrt{3}x+1}{x^2+\sqrt{3}x+1}\right)\,dx-2\int_0^1\frac{1}{x}\arctan\left(\frac{x}{1-x^2}\right)\,dx\\
&=-\int_0^1 \frac{1}{x\sqrt{3}}\ln\left(\frac{x^2-\sqrt{3}x+1}{x^2+\sqrt{3}x+1}\right)\,dx-2\int_0^1\frac{1}{x}\arctan\left(\frac{x}{1-x^2}\right)\,dx\\
\end{align*}
\begin{align*}
L&=\int_0^1 \frac{1}{x}\ln\left(\frac{x^2-\sqrt{3}x+1}{x^2+\sqrt{3}x+1}\right)\,dx\\
&=\int_0^1 \frac{1}{x}\ln\left(\frac{\left(x^2-\sqrt{3}x+1\right)\left(x^2+\sqrt{3}x+1\right)}{\left(x^2+\sqrt{3}x+1\right)^2}\right)\,dx\\
&=\int_0^1 \frac{1}{x}\ln\left(x^4-x^2+1\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1)\right)\,dx\\
&=\int_0^1 \frac{x}{x^2}\ln\left(\frac{1+x^6}{1+x^2}\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1)\right)\,dx\\
\end{align*}
En la primera integral realizar el cambio de variable $y=x^2$,
\begin{align*}L&=\frac{1}{2}\int_0^1 \frac{1}{x}\ln\left(\frac{1+x^3}{1+x}\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
&=\frac{1}{2}\int_0^1 \frac{x^2}{x^3}\ln\left(1+x^3\right)\,dx-\frac{1}{2}\int_0^1 \frac{1}{x}\ln\left(1+x\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
\end{align*}
En la primera integral realizar el cambio de variable $y=x^3$,
\begin{align*}L&=\frac{1}{6}\int_0^1 \frac{1}{x}\ln\left(1+x\right)\,dx-\frac{1}{2}\int_0^1 \frac{1}{x}\ln\left(1+x\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
&=-\frac{1}{3}\int_0^1 \frac{1}{x}\ln\left(1+x\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
&=\frac{1}{3}\int_0^1 \frac{1}{x}\ln\left(1-x\right)\,dx-\frac{1}{3}\int_0^1 \frac{1}{x}\ln\left(1-x^2\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
\end{align*}
En la segunda integral realizar el cambio de variable $y=x^2$,
\begin{align*}L&=\frac{1}{3}\int_0^1 \frac{1}{x}\ln\left(1-x\right)\,dx-\frac{1}{6}\int_0^1 \frac{1}{x}\ln\left(1-x\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
&=\frac{1}{6}\int_0^1 \frac{1}{x}\ln\left(1-x\right)\,dx-2\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\
\end{align*}
\begin{align*}M&=\int_0^1 \frac{1}{x}\ln\left(x^2+\sqrt{3}x+1\right)\,dx\\\end{align*}
Definir la función de $F$ a $\left[0;\sqrt{3}\right]$ ,
\begin{align*}F(a)=\int_0^1 \frac{1}{x}\ln\left(x^2+ax+1\right)\,dx\\\end{align*}
Observar que $F(\sqrt{3})=M$ y,
\begin{align*}F(0)&=\int_0^1 \frac{1}{x}\ln\left(x^2+1\right)\,dx\\
&=-\frac{1}{4}\int_0^1 \frac{1}{x}\ln\left(1-x\right)\,dx\\
\end{align*}
Desde $0<a<2$,
\begin{align*}F^\prime(a)&=\int_0^1 \frac{1}{x^2+ax+1}\,dx\\
&=\left[\frac{2}{\sqrt{4-a^2}}\arctan\left(\frac{2x+a}{\sqrt{4-a^2}}\right)\right]_0^1\\
&=\frac{2}{\sqrt{4-a^2}}\arctan\left(\frac{2+a}{\sqrt{4-a^2}}\right)-\frac{2}{\sqrt{4-a^2}}\arctan\left(\frac{a}{\sqrt{4-a^2}}\right)\\
&=\frac{2}{\sqrt{4-a^2}}\arctan\left(\sqrt{\frac{2-a}{2+a}}\right)\\
\end{align*}
\begin{align*}F(\sqrt{3})-F(0)=\int_0^{\sqrt{3}}\frac{2}{\sqrt{4-a^2}}\arctan\left(\sqrt{\frac{2-a}{2+a}}\right)\,da\\
\end{align*}
Realizar el cambio de variable $y=\sqrt{\frac{2-a}{2+a}}$,
\begin{align*}F(\sqrt{3})-F(0)&=4\int_{2-\sqrt{3}}^1 \frac{\arctan y}{1+y^2}\,dy\\
&=2\Big[\arctan^2(x)\Big]_{2-\sqrt{3}}^1\\
&=2\times \frac{\pi^2}{4^2} -2\times \frac{\pi^2}{12^2}\\
&=\frac{\pi^2}{9}
\end{align*}
Desde entonces,
\begin{align*}\int_0^1 \frac{1}{x}\ln\left(1-x\right)\,dx=-\frac{\pi^2}{6}\end{align*}
A continuación,
\begin{align*}M&=F(\sqrt{3})\\
&=F(0)+\frac{\pi^2}{9}\\
&=-\frac{1}{4}\times -\frac{\pi^2}{6}+\frac{\pi^2}{9}\\
&=\frac{11\pi^2}{72}
\end{align*}
Por lo tanto,
\begin{align*}L&=-\frac{1}{6}\times -\frac{\pi^2}{6}-2M\\
&=\frac{1}{6}\times -\frac{\pi^2}{6}-2\times \frac{11\pi^2}{72}\\
&=-\frac{\pi^2}{3}
\end{align*}
\begin{align*}
K&=\int_0^1 \frac{\arctan\left(\frac{x}{1-x^2}\right)}{x}\,dx\\
\end{align*}
Realizar el cambio de variable $x=\tan\left(\frac{t}{2}\right) $,
\begin{align*}
K&=\int_0^{\frac{\pi}{2}} \frac{\arctan\left(\frac{1}{2}\tan t\right)}{\sin t}\,dt
\end{align*}
Definir la función de $H$ a $\left[\frac{1}{2};1\right]$ ,
\begin{align*}H(a)&=\int_0^{\frac{\pi}{2}} \frac{\arctan\left(a\tan t\right)}{\sin t}\,dt\end{align*}
Observar que $K=H\left(\dfrac{1}{2}\right)$ y,
\begin{align*}H(1)&=\int_0^{\frac{\pi}{2}} \frac{t}{\sin t}\,dt\\
&=\Big[t\ln\left(\tan\left(\frac{t}{2} \right)\right)\Big]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}}\ln\left(\tan\left(\frac{t}{2} \right)\right)\,dt\\
&=-\int_0^{\frac{\pi}{2}}\ln\left(\tan\left(\frac{t}{2} \right)\right)\,dt\\
\\\end{align*}
Realizar el cambio de variable $x=\dfrac{t}{2}$,
\begin{align*}H(1)&=-2\int_0^{\frac{\pi}{4}}\ln\left(\tan\left(t \right)\right)\,dt\\
&=2\text{G}
\\\end{align*}
\begin{align*}H^\prime (a)&=\int_0^{\frac{\pi}{2}} \frac{\cos x}{1-(1-a^2)\sin^2 x}\,dt\\
&=\left[\frac{1}{2\sqrt{1-a^2}}\ln\left(\frac{1+\sin(x)\sqrt{1-a^2}}{1-\sin(x)\sqrt{1-a^2}}\right)\right]_0^{\frac{\pi}{2}}\\
&=\frac{1}{2\sqrt{1-a^2}}\ln\left(\frac{1+\sqrt{1-a^2}}{1-\sqrt{1-a^2}}\right)
\end{align*}
Por lo tanto,
\begin{align*}H(1)-H\left(\frac{1}{2}\right)&=\int_{\frac{1}{2}}^1 \frac{1}{2\sqrt{1-a^2}}\ln\left(\frac{1+\sqrt{1-a^2}}{1-\sqrt{1-a^2}}\right)\,da\end{align*}
Realizar el cambio de variable $y=\arctan\left(\sqrt{\dfrac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}}\right)$
\begin{align*}H(1)-H\left(\frac{1}{2}\right)&=-2\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \ln\left(\tan y\right)\,dy\\
&=-2\int_0^{\frac{\pi}{4}} \ln\left(\tan y\right)\,dy+\int_0^{\frac{\pi}{12}} \ln\left(\tan y\right)\,dy
\end{align*}
Pero, es bien sabido que:
\begin{align*}\int_0^{\frac{\pi}{4}} \ln\left(\tan y\right)\,dy=-\text{G}\\
\int_0^{\frac{\pi}{12}} \ln\left(\tan y\right)\,dy=-\frac{2}{3}\text{G}\\
\end{align*}
(véase Integral: $\int_0^{\pi/12} \ln(\tan x)\,dx$ )
Por lo tanto,
\begin{align*}H(1)-H\left(\frac{1}{2}\right)&=2\text{G}+2\times -\frac{2}{3}\text{G}\\
&=\frac{2}{3}\text{G}
\end{align*}
Por lo tanto,
\begin{align*}
K&=H\left(\frac{1}{2}\right)\\
&=H(1)-\frac{2}{3}\text{G}\\
&=2\text{G}-\frac{2}{3}\text{G}\\
&=\frac{4}{3}\text{G}
\end{align*}
\begin{align*}I&=-\frac{1}{\sqrt{3}}L-2K\\
&=-\frac{1}{\sqrt{3}}\times -\frac{\pi^2}{3}-2\times \frac{4}{3}\text{G}\\
&=\boxed{\frac{\sqrt{3}\pi^2}{9}-\frac{8}{3}\text{G}}
\end{align*}
PS:
En realidad,
\begin{align}\int_0^1 \frac{\arctan\left( \frac{x}{1-x^2}\right)}{x}\,dx-\int_0^1 \frac{\arctan x}{x}\,dx=\int_0^1 \frac{\arctan \left(x^3\right)}{x}\,dx\end{align}
En el último integral realizar el cambio de variable $y=x^3$,
\begin{align}\int_0^1 \frac{\arctan\left( \frac{x}{1-x^2}\right)}{x}\,dx-\int_0^1 \frac{\arctan x}{x}\,dx=\frac{1}{3}\int_0^1 \frac{\arctan x}{x}\,dx\end{align}
por lo tanto,
\begin{align}\int_0^1 \frac{\arctan\left( \frac{x}{1-x^2}\right)}{x}\,dx&=\frac{1}{3}\int_0^1 \frac{\arctan x}{x}\,dx+\int_0^1 \frac{\arctan x}{x}\,dx\\
&=\frac{4}{3}\int_0^1 \frac{\arctan x}{x}\,dx\\
&=\frac{4}{3}\text{G}
\end{align}