Mostrar que el límite no existe <span class="math-container">$\lim_{(x, y) \to (0,0)}\frac{5x^2}{x^2 + y^2}$</span>
tentativa:
que <span class="math-container">$y = 0$</span>
<span class="math-container">$\lim_{x \to 0} \frac{5x^2}{x^2 + 0^2} = 5$</span>
que <span class="math-container">$x = 0$</span>
<span class="math-container">$\lim_{y \to 0} \frac{5(0)^2}{y^2} = 0$</span>
<span class="math-container">$5 \neq 0$</span>, por lo tanto dos valores diferentes, no existe límite
¿Correcto?