$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_0^{\pi/2}\ln\pars{{1 + \cos\pars{x} \más de 1 a\cos\pars{x}}}\,
{1 \over \cos\pars{x}}\,\dd x:\ {\large ?}\,.\qquad\qquad\verts{un}\ <\ 1}$.
La idea general es la derivada respecto de $\ds{\quad a\quad}$ a fin de
"matar " el "$\ds{\cos\pars{x}}$ plazo " en el denominador:
\begin{align}&\color{#c00000}{\partiald{}{a}\bracks{\int_0^{\pi/2}
\ln\pars{{1 + a\cos\pars{x} \over 1 - a\cos\pars{x}}}\,{\dd x \over \cos\pars{x}}}}
\\[3mm]&=\int_0^{\pi/2}\bracks{{\cos\pars{x} \over 1 + a\cos\pars{x}}
-{-\cos\pars{x} \over 1 - a\cos\pars{x}}}\,{\dd x \over \cos\pars{x}}
=2\int_{0}^{\pi/2}{\dd x \over 1 - a^{2}\cos^{2}\pars{x}}
\\[3mm]&=2\int_{0}^{\pi/2}{\sec^{2}\pars{x}\,\dd x \over \sec^{2}\pars{x} - a^{2}}
=2\int_{0}^{\pi/2}{\sec^{2}\pars{x}\,\dd x \over \tan^{2}\pars{x} + 1 - a^{2}}
=2\int_{0}^{\infty}{\dd x \over x^{2} + 1 - a^{2}}
\\[3mm]&={2 \over \root{1 - a^{2}}}\
\overbrace{\int_{0}^{\infty}{\dd x \over x^{2} + 1}}^{\ds{=\ {\pi \over 2}}}\ =\
\color{#c00000}{\pi \over \root{1 - a^{2}}}
\end{align}
$$\color{#66f}{\large%
\int_0^{\pi/2}\ln\pars{{1 + \cos\pars{x} \más de 1 a\cos\pars{x}}}\,
{1 \over \cos\pars{x}}\,\dd x}
=\int_{0}^{a}{\pi\,\dd t \\raíz{1 - t^{2}}}
=\color{#66f}{\large\pi\ \arcsin\pars{un}}
$$