$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{I\equiv\int_{0}^{\infty}\ln\pars{x}
\exp\pars{-\,{1 + x^{4} \over 2\alpha x^{2}}}\,
{x^4+\alpha x^2 - 1 \sobre x^4}\,\dd x=
{\raíz{2\alpha^{3}\pi} \over 2\root[\alpha]{\expo{}}}:\ {\large ?},
\qquad \alpha > 0}$.
Desde @Chen Wang respuesta$\ds{\pars{~\mbox{line}\ 4~}}$:
$$
I=\alpha\int_{0}^{\infty}{1 \over x^{2}}
\exp\pars{-\,{1 + x^{4} \over 2\alpha x^{2}}}\,\dd x
$$
Con $\ds{\expo{\theta} = x}$:
\begin{align}
I&=\alpha\int_{-\infty}^{\infty}\expo{-2\theta}
\exp\pars{-\,{\cosh\pars{2\theta} \over \alpha}}\,\expo{\theta}\,\dd\theta
=2\alpha\int_{0}^{\infty}\cosh\pars{\theta}
\exp\pars{-\,{\cosh\pars{2\theta} \over \alpha}}\,\dd\theta
\end{align}
Desde
$\ds{\cosh\pars{2\theta} = \cosh^{2}\pars{\theta} + \sinh^{2}\pars{\theta}
= 2\sinh^{2}\pars{\theta} + 1}$ y
$\ds{\totald{\sinh\pars{\theta}}{\theta} = \cos\pars{\theta}}$ tendremos:
\begin{align}
\color{#44f}{\large I}&=
2\alpha\expo{-1/\alpha}\
\overbrace{\int_{0}^{\infty}\cosh\pars{\theta}
\exp\pars{-\,{2\sinh^{2}\pars{\theta} \over \alpha}}\,\dd\theta}
^{\ds{\mbox{Lets}\ u\ \equiv\ \sinh\pars{\theta}}}
={2\alpha \over \root[\alpha]{\expo{}}}\int_{0}^{\infty}\expo{-2u^{2}/\alpha}
\,\dd u
\\[3mm]&={2\alpha \over \root[\alpha]{\expo{}}}\,\root{\alpha \over 2}\
\underbrace{\int_{0}^{\infty}\expo{-u^{2}}\,\dd u}_{\ds{=\ {\root{\pi} \over 2}}}
=\color{#44f}{\large{\root{2\alpha^{3}\pi} \over 2\root[\alpha]{\expo{}}}}
\end{align}