\begin{align}J&=\int_0^1 \frac{(x^2+1)\ln(1+x)}{x^4-x^2+1}dx\\ &=\int_0^1\int_0^1 \frac{x(x^2+1)}{(x^4-x^2+1)(1+xt)}\,dt\,dx\\ &=-\int_0^1\int_0^1 \frac{t(t^2+1)}{(t^4-t^2+1)(1+xt)}\,dt\,dx+\int_0^1\int_0^1 \frac{t^3+t^2x-\sqrt{3}t^2-\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2-\sqrt{3}x+1)}\,dt\,dx+\\ &\int_0^1\int_0^1 \frac{t^3+t^2x+\sqrt{3}t^2+\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2+\sqrt{3}x+1)}\,dt\,dx\\ &=-J+\int_0^1\int_0^1 \frac{t^3+t^2x-\sqrt{3}t^2-\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2-\sqrt{3}x+1)}\,dt\,dx+\\ &\int_0^1\int_0^1 \frac{t^3+t^2x+\sqrt{3}t^2+\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2+\sqrt{3}x+1)}\,dt\,dx\\ \end{align}
Dado que,
\begin{align}A_1&=\int_0^1 \frac{t}{t^4-t^2+1}\,dt\\ &=\frac{1}{\sqrt{3}}\left[\arctan\left(\frac{2t^2-1}{\sqrt{3}}\right)\right]_0^1\\ &=\frac{\pi}{3\sqrt{3}}\\ A_3&=\int_0^1 \frac{t^3}{t^4-t^2+1}\,dt\\ &=\frac{1}{12}\left[2\sqrt{3}\arctan\left(\frac{2t^2-1}{\sqrt{3}}\right)+3\ln(t^4-t^2+1)\right]_0^1\\ &=\frac{\pi}{6\sqrt{3}}\\ B_1&=\int_0^1 \frac{1}{x^2-\sqrt{3}x+1}\,dx\\ &=2\Big[\arctan\left(2x-\sqrt{3}\right)\Big]_0^1\\ &=\frac{5\pi}{6}\\ B_2&=\int_0^1 \frac{1}{x^2+\sqrt{3}x+1}\,dx\\ &=2\Big[\arctan\left(2x+\sqrt{3}\right)\Big]_0^1\\ &=\frac{\pi}{6}\\ C_1&=\int_0^1 \frac{x}{x^2-\sqrt{3}x+1}\,dx\\ &=\Big[\frac{1}{2}\ln\left(x^2-\sqrt{3}x+1\right)+\sqrt{3}\arctan\left(2x-\sqrt{3}\right)\Big]_0^1\\ &=\frac{1}{2}\ln\left(2-\sqrt{3}\right)+\frac{5}{4\sqrt{3}}\pi\\ C_2&=\int_0^1 \frac{x}{x^2+\sqrt{3}x+1}\,dx\\ &=\Big[\frac{1}{2}\ln\left(x^2+\sqrt{3}x+1\right)-\sqrt{3}\arctan\left(2x+\sqrt{3}\right)\Big]_0^1\\ &=\frac{1}{2}\ln\left(2+\sqrt{3}\right)-\frac{1}{4\sqrt{3}}\pi\\ A_2&=\int_0^1 \frac{t^2}{t^4-t^2+1}\,dt\\ &=\int_0^1 \frac{t^2+1}{t^4-t^2+1}\,dt-\int_0^1 \frac{1}{t^4-t^2+1}\,dt\\ &=\left[\arctan\left(\frac{x}{1-x^2}\right)\right]_0^1-\frac{1}{2\sqrt{3}}\int_0^1 \frac{x}{x^2+\sqrt{3}x+1}\,dx+\frac{1}{2\sqrt{3}}\int_0^1 \frac{x}{x^2-\sqrt{3}x+1}\,dx-\\ &\frac{1}{2}\int_0^1 \frac{1}{x^2+\sqrt{3}x+1}\,dx-\frac{1}{2}\int_0^1 \frac{1}{x^2-\sqrt{3}x+1}\,dx\\ &=\frac{\pi}{2}-\frac{1}{2\sqrt{3}}C_2+\frac{1}{2\sqrt{3}}C_1-\frac{1}{2}B_2-\frac{1}{2}B_1\\ &=\frac{\pi}{4}-\frac{1}{2\sqrt{3}}\ln\left(2+\sqrt{3}\right)\\ A_0&=\int_0^1 \frac{1}{t^4-t^2+1}\,dt\\ &=\int_0^1 \frac{1+t^2}{t^4-t^2+1}\,dt-\int_0^1 \frac{t^2}{t^4-t^2+1}\,dt\\ &=\left[\arctan\left(\frac{x}{1-x^2}\right)\right]_0^1-A_2\\ &=\frac{\pi}{4}+\frac{1}{2\sqrt{3}}\ln\left(2+\sqrt{3}\right)\\ \end{align}
entonces,
\begin{align} 2J&=\left(\frac{1}{2}A_3B_1+\frac{1}{2}A_2C_1-\frac{\sqrt{3}}{2}A_2B_1-\frac{\sqrt{3}}{2}A_1C_1+\frac{1}{2}A_1B_1+\frac{1}{2}A_0C_1\right)+\\ &\left(\frac{1}{2}A_3B_2+\frac{1}{2}A_2C_2+\frac{\sqrt{3}}{2}A_2B_2+\frac{\sqrt{3}}{2}A_1C_2+\frac{1}{2}A_1B_2+\frac{1}{2}A_0C_2\right)\\ \end{align}
Dado que,
\begin{align}\frac{1}{2}A_3B_1&=\frac{5\pi^2}{72\sqrt{3}}\\ \frac{1}{2}A_2C_1&=\frac{5\pi^2}{32\sqrt{3}}+\frac{\pi}{16}\ln\left(2-\sqrt{3}\right)-\frac{1}{8\sqrt{3}}\ln\left(2-\sqrt{3}\right)\ln\left(2+\sqrt{3}\right)-\frac{5\pi}{48}\ln\left(2+\sqrt{3}\right)\\ -\frac{\sqrt{3}}{2}A_2B_1&=\frac{5\pi}{24}\ln\left(2+\sqrt{3}\right)-\frac{5\pi^2}{16\sqrt{3}}\\ -\frac{\sqrt{3}}{2}A_1C_1&=-\frac{\pi}{12}\ln\left(2-\sqrt{3}\right)-\frac{5\pi^2}{24\sqrt{3}}\\ \frac{1}{2}A_1B_1&=\frac{5\pi^2}{36\sqrt{3}}\\ \frac{1}{2}A_0C_1&=\frac{\pi}{16}\ln\left(2-\sqrt{3}\right)+\frac{5\pi^2}{32\sqrt{3}}+\frac{1}{8\sqrt{3}}\ln\left(2-\sqrt{3}\right)\ln\left(2+\sqrt{3}\right)+\frac{5\pi}{48}\ln\left(2+\sqrt{3}\right)\\ \frac{1}{2}A_3B_2&=\frac{\pi^2}{72\sqrt{3}}\\ \frac{1}{2}A_2C_2&=\frac{\pi}{12}\ln\left(2+\sqrt{3}\right)-\frac{\pi^2}{32\sqrt{3}}-\frac{1}{8\sqrt{3}}\ln^2\left(2+\sqrt{3}\right)\\ \frac{\sqrt{3}}{2}A_2B_2&=\frac{\pi^2}{16\sqrt{3}}-\frac{\pi}{24}\ln\left(2+\sqrt{3}\right)\\ \frac{\sqrt{3}}{2}A_1C_2&=\frac{\pi}{12}\ln\left(2+\sqrt{3}\right)-\frac{\pi^2}{24\sqrt{3}}\\ \frac{1}{2}A_1B_2&=\frac{\pi^2}{36\sqrt{3}}\\ \frac{1}{2}A_0C_2&=\frac{1}{8\sqrt{3}}\ln^2\left(2+\sqrt{3}\right)+\frac{\pi}{24}\ln\left(2+\sqrt{3}\right)-\frac{\pi^2}{32\sqrt{3}}\\ \end{align}
Por lo tanto,
\begin{align}2J&=\frac{\pi}{24}\ln\left(2-\sqrt{3}\right)+\frac{3\pi}{8}\ln\left(2+\sqrt{3}\right)\end{align}
Dado que,
\begin{align}\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\end{align}
Por lo tanto,
\begin{align}2J&=-\frac{\pi}{24}\ln\left(2+\sqrt{3}\right)+\frac{3\pi}{8}\ln\left(2+\sqrt{3}\right)\\ &=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right) \end{align}
Así,
\begin{align}\boxed{J=\frac{\pi}{6}\ln\left(2+\sqrt{3}\right)} \end{align}
0 votos
Esta sería una buena oportunidad para aplicar una fórmula de integración que he derivado aquí: math.stackexchange.com/questions/188732/…
1 votos
Una extensión de peso $3$ con un resultado relativamente simple: $$\int_0^1 \frac{\left(x^2+1\right) \log (x+1) \log (1-x)}{x^4-x^2+1}dx $$ es igual a $$-\frac{4}{3} G \log (2)-\frac{8}{3} \Im\left(\text{Li}_3\left(\frac{1}{2}+\frac{i}{2}\right)\right)+\frac{17 \pi ^3}{288}+\frac{1}{12} \pi \log ^2(2)-\frac{1}{8} \pi \log ^2\left(\sqrt{3}+2\right)$$ $\int_0^1 \frac{\left(x^2+1\right) \log \left(x^2+1\right) \tan ^{-1}(x)}{x^4-x^2+1} dx$ también tiene un resultado simple.