\begin{align}J&=\int_0^1 \frac{(x^2+1)\ln(1+x)}{x^4-x^2+1}dx\\
&=\int_0^1\int_0^1 \frac{x(x^2+1)}{(x^4-x^2+1)(1+xt)}\,dt\,dx\\
&=-\int_0^1\int_0^1 \frac{t(t^2+1)}{(t^4-t^2+1)(1+xt)}\,dt\,dx+\int_0^1\int_0^1 \frac{t^3+t^2x-\sqrt{3}t^2-\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2-\sqrt{3}x+1)}\,dt\,dx+\\
&\int_0^1\int_0^1 \frac{t^3+t^2x+\sqrt{3}t^2+\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2+\sqrt{3}x+1)}\,dt\,dx\\
&=-J+\int_0^1\int_0^1 \frac{t^3+t^2x-\sqrt{3}t^2-\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2-\sqrt{3}x+1)}\,dt\,dx+\\
&\int_0^1\int_0^1 \frac{t^3+t^2x+\sqrt{3}t^2+\sqrt{3}tx+t+x}{2(t^4-t^2+1)(x^2+\sqrt{3}x+1)}\,dt\,dx\\
\end{align}
Desde entonces,
\begin{align}A_1&=\int_0^1 \frac{t}{t^4-t^2+1}\,dt\\
&=\frac{1}{\sqrt{3}}\left[\arctan\left(\frac{2t^2-1}{\sqrt{3}}\right)\right]_0^1\\
&=\frac{\pi}{3\sqrt{3}}\\
A_3&=\int_0^1 \frac{t^3}{t^4-t^2+1}\,dt\\
&=\frac{1}{12}\left[2\sqrt{3}\arctan\left(\frac{2t^2-1}{\sqrt{3}}\right)+3\ln(t^4-t^2+1)\right]_0^1\\
&=\frac{\pi}{6\sqrt{3}}\\
B_1&=\int_0^1 \frac{1}{x^2-\sqrt{3}x+1}\,dx\\
&=2\Big[\arctan\left(2x-\sqrt{3}\right)\Big]_0^1\\
&=\frac{5\pi}{6}\\
B_2&=\int_0^1 \frac{1}{x^2+\sqrt{3}x+1}\,dx\\
&=2\Big[\arctan\left(2x+\sqrt{3}\right)\Big]_0^1\\
&=\frac{\pi}{6}\\
C_1&=\int_0^1 \frac{x}{x^2-\sqrt{3}x+1}\,dx\\
&=\Big[\frac{1}{2}\ln\left(x^2-\sqrt{3}x+1\right)+\sqrt{3}\arctan\left(2x-\sqrt{3}\right)\Big]_0^1\\
&=\frac{1}{2}\ln\left(2-\sqrt{3}\right)+\frac{5}{4\sqrt{3}}\pi\\
C_2&=\int_0^1 \frac{x}{x^2+\sqrt{3}x+1}\,dx\\
&=\Big[\frac{1}{2}\ln\left(x^2+\sqrt{3}x+1\right)-\sqrt{3}\arctan\left(2x+\sqrt{3}\right)\Big]_0^1\\
&=\frac{1}{2}\ln\left(2+\sqrt{3}\right)-\frac{1}{4\sqrt{3}}\pi\\
A_2&=\int_0^1 \frac{t^2}{t^4-t^2+1}\,dt\\
&=\int_0^1 \frac{t^2+1}{t^4-t^2+1}\,dt-\int_0^1 \frac{1}{t^4-t^2+1}\,dt\\
&=\left[\arctan\left(\frac{x}{1-x^2}\right)\right]_0^1-\frac{1}{2\sqrt{3}}\int_0^1 \frac{x}{x^2+\sqrt{3}x+1}\,dx+\frac{1}{2\sqrt{3}}\int_0^1 \frac{x}{x^2-\sqrt{3}x+1}\,dx-\\
&\frac{1}{2}\int_0^1 \frac{1}{x^2+\sqrt{3}x+1}\,dx-\frac{1}{2}\int_0^1 \frac{1}{x^2-\sqrt{3}x+1}\,dx\\
&=\frac{\pi}{2}-\frac{1}{2\sqrt{3}}C_2+\frac{1}{2\sqrt{3}}C_1-\frac{1}{2}B_2-\frac{1}{2}B_1\\
&=\frac{\pi}{4}-\frac{1}{2\sqrt{3}}\ln\left(2+\sqrt{3}\right)\\
A_0&=\int_0^1 \frac{1}{t^4-t^2+1}\,dt\\
&=\int_0^1 \frac{1+t^2}{t^4-t^2+1}\,dt-\int_0^1 \frac{t^2}{t^4-t^2+1}\,dt\\
&=\left[\arctan\left(\frac{x}{1-x^2}\right)\right]_0^1-A_2\\
&=\frac{\pi}{4}+\frac{1}{2\sqrt{3}}\ln\left(2+\sqrt{3}\right)\\
\end{align}
a continuación,
\begin{align}
2J&=\left(\frac{1}{2}A_3B_1+\frac{1}{2}A_2C_1-\frac{\sqrt{3}}{2}A_2B_1-\frac{\sqrt{3}}{2}A_1C_1+\frac{1}{2}A_1B_1+\frac{1}{2}A_0C_1\right)+\\
&\left(\frac{1}{2}A_3B_2+\frac{1}{2}A_2C_2+\frac{\sqrt{3}}{2}A_2B_2+\frac{\sqrt{3}}{2}A_1C_2+\frac{1}{2}A_1B_2+\frac{1}{2}A_0C_2\right)\\
\end{align}
Desde entonces,
\begin{align}\frac{1}{2}A_3B_1&=\frac{5\pi^2}{72\sqrt{3}}\\
\frac{1}{2}A_2C_1&=\frac{5\pi^2}{32\sqrt{3}}+\frac{\pi}{16}\ln\left(2-\sqrt{3}\right)-\frac{1}{8\sqrt{3}}\ln\left(2-\sqrt{3}\right)\ln\left(2+\sqrt{3}\right)-\frac{5\pi}{48}\ln\left(2+\sqrt{3}\right)\\
-\frac{\sqrt{3}}{2}A_2B_1&=\frac{5\pi}{24}\ln\left(2+\sqrt{3}\right)-\frac{5\pi^2}{16\sqrt{3}}\\
-\frac{\sqrt{3}}{2}A_1C_1&=-\frac{\pi}{12}\ln\left(2-\sqrt{3}\right)-\frac{5\pi^2}{24\sqrt{3}}\\
\frac{1}{2}A_1B_1&=\frac{5\pi^2}{36\sqrt{3}}\\
\frac{1}{2}A_0C_1&=\frac{\pi}{16}\ln\left(2-\sqrt{3}\right)+\frac{5\pi^2}{32\sqrt{3}}+\frac{1}{8\sqrt{3}}\ln\left(2-\sqrt{3}\right)\ln\left(2+\sqrt{3}\right)+\frac{5\pi}{48}\ln\left(2+\sqrt{3}\right)\\
\frac{1}{2}A_3B_2&=\frac{\pi^2}{72\sqrt{3}}\\
\frac{1}{2}A_2C_2&=\frac{\pi}{12}\ln\left(2+\sqrt{3}\right)-\frac{\pi^2}{32\sqrt{3}}-\frac{1}{8\sqrt{3}}\ln^2\left(2+\sqrt{3}\right)\\
\frac{\sqrt{3}}{2}A_2B_2&=\frac{\pi^2}{16\sqrt{3}}-\frac{\pi}{24}\ln\left(2+\sqrt{3}\right)\\
\frac{\sqrt{3}}{2}A_1C_2&=\frac{\pi}{12}\ln\left(2+\sqrt{3}\right)-\frac{\pi^2}{24\sqrt{3}}\\
\frac{1}{2}A_1B_2&=\frac{\pi^2}{36\sqrt{3}}\\
\frac{1}{2}A_0C_2&=\frac{1}{8\sqrt{3}}\ln^2\left(2+\sqrt{3}\right)+\frac{\pi}{24}\ln\left(2+\sqrt{3}\right)-\frac{\pi^2}{32\sqrt{3}}\\
\end{align}
Por lo tanto,
\begin{align}2J&=\frac{\pi}{24}\ln\left(2-\sqrt{3}\right)+\frac{3\pi}{8}\ln\left(2+\sqrt{3}\right)\end{align}
Desde entonces,
\begin{align}\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\end{align}
Por lo tanto,
\begin{align}2J&=-\frac{\pi}{24}\ln\left(2+\sqrt{3}\right)+\frac{3\pi}{8}\ln\left(2+\sqrt{3}\right)\\
&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)
\end{align}
Por lo tanto,
\begin{align}\boxed{J=\frac{\pi}{6}\ln\left(2+\sqrt{3}\right)}
\end{align}