$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ Con las identidades: \begin {align} {1 \over 1 + \pars {x + y}^{2}} &= \int_ {- \infty }^{ \infty }{ \delta\pars {x + y - z} \over 1 + z^{2}}\, \dd z \\ [3mm] \delta\pars {x + y - z} &= \int_ {- \infty }^{ \infty } \expo { \ic k \pars {x\ +\ y\ -\ z}}, {\} \dd k \over 2 \pi } \end {align} tendremos
\begin {align} { \rm F} \pars {y}& = \color {#66f}{ \large % \int_ {- \infty }^{ \infty }{ \dd x \over \pars {1 + x^{2}} \bracks {1 + \pars {x + y}^{2}}}} \\ [8mm]&= \int_ {- \infty }^{ \infty } \expo { \ic ky} \pars { \int_ {- \infty }^{ \infty }{ \expo { \ic kx} \over 1 + x^{2}}\, \dd x} \pars { \int_ {- \infty }^{ \infty }{ \expo {- \ic kz} \over 1 + z^{2}}\, \dd z} \,{ \dd k \over 2 \pi } \\ [8mm]&= \int_ {- \infty }^{ \infty } \expo { \ic ky} \verts { \int_ {- \infty }^{ \infty }{ \expo { \ic kx} \over 1 + x^{2}}\, \dd x}^{2} \,{ \dd k \over 2 \pi } = \int_ {- \infty }^{ \infty } \expo { \ic ky} \verts {2 \pi\ic\ ,{ \expo { \ic\verts {k} \ic } \over 2 \ic }}^{2}\,{ \dd k \over 2 \pi } \\ [8mm]&= \half\ , \pi\int_ {- \infty }^{ \infty } \expo { \ic ky} \expo {-2 \verts {k}}\, \dd k = \half\ , \pi\int_ {- \infty }^{ \infty } \cos\pars {ky} \expo {-2 \verts {k}}\, \dd k = \pi\ , \Re\int_ {0}^{ \infty } \expo { \pars {-2 + y \ic }k}\, \dd k \\ [8mm]&= \pi\ , \Re\pars {1 \over 2 - y \ic } \end {align}
\begin {align} { \rm F} \pars {y}& = \color {#66f}{ \large % \int_ {- \infty }^{ \infty }{ \dd x \over \pars {1 + x^{2}} \bracks {1 + \pars {x + y}^{2}}}} = \color {#66f}{ \large {2 \pi \over y^{2} + 4}} \end {align}