Se supone que <span class="math-container">$$X=(X_1, ..., X_n),: (\Omega, A,P)\to ({0,1}^n, 2^{{{0,1}}^n})$$ and <span class="math-container">$$Y=(Y_1, ..., Y_n):(\Omega, A,P)\to ({0,1}^n, 2^{{{0,1}}^n})$$</span>are two random Variables that have binary RVs as their components (Therefore <span class="math-container">$ X_i (\omega) \in\ {0, 1}, Y_i(\omega) \in {0,1}$</span>) and both (<span class="math-container">$X$</span> and <span class="math-container">$Y$</span>) are exchangeable, i.e. <span class="math-container">$$P((X_1, ..., X_n)=(x_1, ..., xn))= P((X{\sigma(1)}, ..., X_{\sigma(n)})=(x_1, ..., x_n))$$</span></span>
y
<span class="math-container">$$P((Y_1, ..., Y_n)=(y_1, ..., yn))= P((Y{\sigma(1)}, ..., Y_{\sigma(n)})=(y_1, ..., y_n))$$</span> for all permutations <span class="math-container">$\sigma$</span>.
¿Mi pregunta es si tiene que <span class="math-container">$Z=(X_1Y_1, ..., X_nY_n)$</span> es intercambiable?
¿O enmarcadas diferentemente que suposiciones son necesarias para <span class="math-container">$Z$</span> a ser intercambiables?