Aquí hay evidencia numérica en contra de esa conjetura (con la numeración como en su pregunta, cambiada por una con respecto a la secuencia OEIS). Aquí $R(k)=N(k)/N(k-1)$. Este factor está sistemáticamente por encima de$\sqrt{\mathrm e}$ para$k\ge26$. Si tiende a un límite que tiene una forma cerrada, una estimación más probable es$5/3$, con$\log 5/3\approx0.5108$.
$$ \begin{array}{r|r}
k&N(k)&\log R(k)&\log N(k)/k\\\hline
1&1&&0.000000\\
2&2&0.693147&0.346574\\
3&4&0.693147&0.462098\\
4&6&0.405465&0.447940\\
5&10&0.510826&0.460517\\
6&18&0.587787&0.481729\\
7&30&0.510826&0.485885\\
8&50&0.510826&0.489003\\
9&78&0.444686&0.484079\\
10&130&0.510826&0.486753\\
11&210&0.479573&0.486101\\
12&350&0.510826&0.488161\\
13&586&0.515387&0.490255\\
14&954&0.487344&0.490047\\
15&1606&0.520838&0.492100\\
16&2588&0.477139&0.491165\\
17&4234&0.492262&0.491230\\
18&6944&0.494731&0.491424\\
19&11342&0.490635&0.491383\\
20&18948&0.513186&0.492473\\
21&31450&0.506701&0.493150\\
22&52206&0.506798&0.493771\\
23&85662&0.495212&0.493833\\
24&141680&0.503162&0.494222\\
25&233040&0.497639&0.494359\\
26&385428&0.503144&0.494697\\
27&644910&0.514756&0.495439\\
28&1072074&0.508240&0.495897\\
29&1783342&0.508894&0.496345\\
30&2953094&0.504364&0.496612\\
31&4897922&0.505958&0.496914\\
32&8157096&0.510077&0.497325\\
33&13571014&0.509048&0.497680\\
34&22552212&0.507897&0.497981\\
35&37486916&0.508159&0.498272\\
36&62325564&0.508380&0.498552\\
37&103508754&0.507285&0.498788\\
38&172765524&0.512279&0.499143\\
39&287428656&0.509039&0.499397\\
40&479052200&0.510835&0.499683\\
41&798944976&0.511483&0.499971\\
42&1334245184&0.512829&0.500277\\
\end {array} $$
Aquí está el código de Java para producir esta tabla:
public class Question110661 {
final static int k = 42;
static int [] counts = new int [k];
static boolean [] used = new boolean [k * (k - 1) + 1];
static void recurse (int n,int an) {
if (n == k || used [an])
return;
counts [n++]++;
used [an] = true;
recurse (n,an + n);
recurse (n,an - n);
used [an] = false;
}
public static void main (String [] args) {
recurse (0,used.length / 2);
for (int n = 0;n < k;n++)
System.out.printf (java.util.Locale.ENGLISH,"%d&%d&%.6f&%.6f\\\\\n",n + 1,counts [n],n == 0 ? 0 : Math.log (counts [n] / (double) counts [n-1]),Math.log (counts [n]) / (n + 1));
}
}