Cómo probar $$ \sum\limits_{n=1}^{\infty}\frac{1}{n}\left(\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdots\right)^{2}=\frac{\pi^2\ln2}{6}-\frac{\ln^32}{3}-\frac{3\zeta(3)}{4} $$ $\mathbf {My\,Attempt:}$
Puse $$\left(\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdots\right) = \int_0^1 \frac{x^n}{1+x}dx$$ y por lo tanto
$$\left(\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\cdots\right)^2=\int_0^1\int_0^1 \frac{(xy)^n}{(1+x)(1+y)}dxdy$$
Así, la suma es igual a $$\int_0^1\int_0^1 \frac{1}{(1+x)(1+y)}\left(\sum\limits_{n=1}^{\infty} \frac{(xy)^n}{n}\right)dxdy=-\int_0^1\int_0^1 \frac{\ln(1-xy)}{(1+x)(1+y)}dxdy$$ La integral interna es $$\int_0^1 \frac{\ln(1-xy)}{1+y}dy=\mathrm{Li}_2 \left(\frac{1-x}{1+x}\right)-\mathrm{Li}_2\left(\frac{1}{1+x}\right)+\ln(1-x)\ln\left(\frac{2x}{1+x}\right)$$ El resto es un montón de cálculos.
$\text{Any hint for a better method or idea?}$