$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
&\color{#f00}{\int_{0}^{1}{x^{2n} - x \over 1 + x}\,{\dd x\over \ln\pars{x}}} =
-\int_{0}^{1}{x^{2n} - x \over 1 + x}\
\overbrace{\int_{0}^{\infty}x^{y}\,\dd y}^{\ds{-\,{1 \over \ln\pars{x}}}}\
\,\dd x =
-\int_{0}^{\infty}\int_{0}^{1}{x^{2n + y} - x^{1 + y} \over 1 + x}\,\dd x\,\dd y
\\[3mm] = &\
\int_{0}^{\infty}\pars{\int_{0}^{1}{1 - x^{y + 2n} \over 1 + x}\,\dd x -
\int_{0}^{1}{1 - x^{y + 1} \over 1 + x}\,\dd x}\,\dd y\tag{1}
\end{align}
Sin embargo, mediante el bien conocido digamma $\Psi$ función identidad
$\ds{\left.\int_{0}^{1}{1 - t^{z - 1} \over 1 - t}\,\dd t
\,\right\vert_{\ \Re\pars{z}\ >\ 0} = \Psi\pars{z} + \gamma\quad}$
donde $\gamma$ es el de Euler-Mascheroni constante:
\begin{align}
\fbox{%#%#%} &=
2\int_{0}^{1}{1 - x^{z} \over 1 - x^{2}}\,\dd x -
\int_{0}^{1}{1 - x^{z} \over 1 - x}\,\dd x
\\[3mm] & =
\int_{0}^{1}{x^{-1/2} - x^{z/2 - 1/2} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{z} \over 1 - x}\,\dd x
\\[3mm] & =
\int_{0}^{1}{1 - x^{z/2 - 1/2} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{-1/2} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{z} \over 1 - x}\,\dd x
\\[3mm] & = \fbox{$\ds{%
\Psi\pars{{z \over 2} + \half} - \Psi\pars{\half} - \Psi\pars{z + 1} - \gamma}$}
\end{align}
llegamos, después de la sustitución en $\ds{\int_{0}^{1}{1 - x^{z} \over 1 + x}\,\dd x}$,
\begin{align}
&\color{#f00}{\int_{0}^{1}{x^{2n} - x \over 1 + x}\,{\dd x\over \ln\pars{x}}}
\\[3mm] = &\
\int_{0}^{\infty}\bracks{\Psi\pars{{y \over 2} + n + \half} -
\Psi\pars{y + 2n + 1} - \Psi\pars{{y \over 2} + 1} + \Psi\pars{y + 2}}\,\dd y
\end{align}
Desde
$\ds{\Psi\pars{z}\ \stackrel{\mbox{def}}{=}\
\totald{\ln\pars{\Gamma\pars{z}}}{z}}$:
\begin{align}
&\color{#f00}{\int_{0}^{1}{x^{2n} - x \over 1 + x}\,{\dd x\over \ln\pars{x}}} =
\left.\ln\pars{\Gamma^{2}\pars{y/2 + n + 1/2}\Gamma\pars{y + 2} \over \Gamma^{2}\pars{y/2 + 1}\Gamma\pars{y + 2n + 1}}\right\vert_{\ 0}^{\ \infty}
\\[3mm] = &\
\color{#f00}{%
\ln\pars{2^{1 - 2n}\,{\Gamma\pars{2n + 1} \over \Gamma^{2}\pars{n + 1/2}}}}
\end{align}
Podría simplificar ?.