Simplificar la siguiente expresión y encontrar su dominio
$$\frac{3a + 6b}{a-b}:\frac{a+2b}{2ab-2b^2}.$$
A. $6b\ \text{for}\ a \neq b\land a \neq -2b$
B. $6b\ \text{for}\ a \neq b\land (b \neq 0 \lor a \neq b)$
C. $6b\ \text{for}\ a \neq b\land (b \neq 0 \lor a \neq b) \land a \neq -2b$
D. $6b\ \text{for any}\ a, b$
E. $\dfrac{6b(1 - b)}{a-b}\ \text{for}\ a \neq b$
Después de la simplificación, llego $\mathbf{6b}$, pero en cuanto a dominio, ninguna de las preguntas que le parece correcto.
Aquí están mis cálculos:
$$a - b \neq 0 \implies \mathbf{a \neq b}$$
$$\frac{a+2b}{2ab-2b^2} \neq 0 \implies a+2b \neq 0 \land 2ab - 2b^2 \neq 0$$
$$a + 2b \neq 0 \implies \mathbf{a \neq -2b}$$
$$2ab - 2b^2 = 2b(a-b)\neq 0 \implies \mathbf{b \neq 0 \land a \neq b}$$
Así que mi respuesta es $\mathbf{6b\ \text{for}\ a \neq b \land a \neq -2b \land b \neq 0}$ y parece similar a C, pero después de simplfication C se convierte en el mismo como Un.
$$(a \neq b\land (b \neq 0 \lor a \neq b) \land a \neq -2b) = (a \neq b \land a \neq -2b),$$
porque
$$(A \land (B \lor A) \land C) = (((A \land B) \lor (A \land A)) \land C) = (A \land C).$$
¿Tiene usted alguna idea de dónde está el problema?