Insinuación:
Dejar $u=1-y$ ,
Entonces $u'=-y'$
$u''=-y''$
$\therefore\left(-u''-\dfrac{u'}{x}\right)u-\dfrac{(-u')^4}{x}=0$
$u\left(x\dfrac{d^2u}{dx^2}+\dfrac{du}{dx}\right)+\left(\dfrac{du}{dx}\right)^4=0$
Dejar $x=e^t$ ,
Entonces $t=\ln x$
$\dfrac{du}{dx}=\dfrac{du}{dt}\dfrac{dt}{dx}=\dfrac{1}{x}\dfrac{du}{dt}=e^{-t}\dfrac{du}{dt}$
$\dfrac{d^2u}{dx^2}=\dfrac{d}{dx}\left(e^{-t}\dfrac{du}{dt}\right)=\dfrac{d}{dt}\left(e^{-t}\dfrac{du}{dt}\right)\dfrac{dt}{dx}=\left(e^{-t}\dfrac{d^2u}{dt^2}-e^{-t}\dfrac{du}{dt}\right)e^{-t}=e^{-2t}\dfrac{d^2u}{dt^2}-e^{-2t}\dfrac{du}{dt}$
$\therefore u\left(e^{-t}\dfrac{d^2u}{dt^2}-e^{-t}\dfrac{du}{dt}+e^{-t}\dfrac{du}{dt}\right)+\left(e^{-t}\dfrac{du}{dt}\right)^4=0$
$e^{-t}u\dfrac{d^2u}{dt^2}+e^{-4t}\left(\dfrac{du}{dt}\right)^4=0$
$u\dfrac{d^2u}{dt^2}+e^{-3t}\left(\dfrac{du}{dt}\right)^4=0$
Dejar $u=e^{nt}v$ ,
Entonces $\dfrac{du}{dt}=e^{nt}\dfrac{dv}{dt}+ne^{nt}v$
$\dfrac{d^2u}{dt^2}=e^{nt}\dfrac{d^2v}{dt^2}+ne^{nt}\dfrac{dv}{dt}+ne^{nt}\dfrac{dv}{dt}+n^2e^{nt}v=e^{nt}\dfrac{d^2v}{dt^2}+2ne^{nt}\dfrac{dv}{dt}+n^2e^{nt}v$
$\therefore e^{nt}v\left(e^{nt}\dfrac{d^2v}{dt^2}+2ne^{nt}\dfrac{dv}{dt}+n^2e^{nt}v\right)+e^{-3t}\left(e^{nt}\dfrac{dv}{dt}+ne^{nt}v\right)^4=0$
$e^{2nt}v\left(\dfrac{d^2v}{dt^2}+2n\dfrac{dv}{dt}+n^2v\right)+e^{(4n-3)t}\left(\dfrac{dv}{dt}+nv\right)^4=0$
Elija$2n=4n-3$, es decir,$n=\dfrac{3}{2}$, la EDO se convierte en
$e^{3t}v\left(\dfrac{d^2v}{dt^2}+3\dfrac{dv}{dt}+\dfrac{9v}{4}\right)+e^{3t}\left(\dfrac{dv}{dt}+\dfrac{3v}{2}\right)^4=0$
$4v\left(4\dfrac{d^2v}{dt^2}+12\dfrac{dv}{dt}+9v\right)+\left(2\dfrac{dv}{dt}+3v\right)^4=0$
Dejar $w=\dfrac{dv}{dt}$ ,
Entonces $\dfrac{d^2v}{dt^2}=\dfrac{dw}{dt}=\dfrac{dw}{dv}\dfrac{dv}{dt}=w\dfrac{dw}{dv}$
$\therefore4v\left(4w\dfrac{dw}{dv}+12w+9v\right)+\left(2w+3v\right)^4=0$