Usando la idea de Empy2, tenemos b_n=b_{n-1} donde b_n=(n^2-3n)a_n-(2n-4)a_{n-1} de la cual b_n=b_1, es decir (n^2-3n)a_n-(2n-4)a_{n-1}=-2a_1+2a_0 sigue.
Multiplicando ambos lados por \dfrac{(n-1)(n-4)!}{2^{n}} y el ajuste c_n=\dfrac{n!}{2^n(n-2)}a_n obtenemos \begin{align}c_n-c_{n-1}&=\frac{(n-1)(n-4)!}{2^{n-1}}(a_0-a_1) \\\\&=\left(\frac{(n-3)!}{2^{n-1}}-\frac{(n-4)!}{2^{n-2}}\right)(a_0-a_1)+\frac{(n-4)!}{2^{n-3}}(a_0-a_1)\end{align}
Para n\ge 4 obtenemos, fijando f(n)=\displaystyle\sum_{k=4}^{n}\frac{(k-4)!}{2^{k-3}} ,
\begin{align}c_n&=c_3+(a_0-a_1)\sum_{k=4}^{n}\left(\frac{(k-3)!}{2^{k-1}}-\frac{(k-4)!}{2^{k-2}}\right)+(a_0-a_1)f(n) \\\\&=\frac{1}{4}a_1-\frac 34a_0+(a_0-a_1)\left(\frac{(n-3)!}{2^{n-1}}-\frac 14\right)+(a_0-a_1)f(n) \\\\&=\left(-1+\frac{(n-3)!}{2^{n-1}}+f(n)\right)a_0+\left(\frac 12-\frac{(n-3)!}{2^{n-1}}-f(n)\right)a_1\end{align}
Así, obtenemos, para n\ge 4 , \begin{align}a_n&=\frac{2^n(n-2)}{n!}c_n \\\\&=\frac{2^n(n-2)}{n!}\left(-1+\frac{(n-3)!}{2^{n-1}}+f(n)\right)a_0 \\&\qquad\quad+\frac{2^n(n-2)}{n!}\left(\frac 12-\frac{(n-3)!}{2^{n-1}}-f(n)\right)a_1\end{align}
Por lo tanto, tenemos
\begin{align}\sum_{n=0}^{\infty}|a_n|&\le |a_0|+|a_1|+|a_2|+|a_3|+\sum_{n=4}^{\infty}\bigg|\frac{2^n(n-2)}{n!}\left(-1+\frac{(n-3)!}{2^{n-1}}+f(n)\right)a_0\bigg| \\\\&\qquad\quad +\sum_{n=4}^{\infty}\bigg|\frac{2^n(n-2)}{n!}\left(\frac 12-\frac{(n-3)!}{2^{n-1}}-f(n)\right)a_1\bigg| \\\\&\le |a_0|+|a_1|+|a_2|+|a_3|+\sum_{n=4}^{\infty}\bigg|-\frac{2^n(n-2)}{n!}a_0\bigg| +\sum_{n=4}^{\infty}\bigg|\frac{(n-3)!}{2^{n-1}}\cdot\frac{2^n(n-2)}{n!}a_0\bigg| \\&\qquad\quad +\sum_{n=4}^{\infty}\bigg|\frac{2^n(n-2)}{n!}a_0f(n)\bigg| +\sum_{n=4}^{\infty}\bigg|\frac 12\cdot \frac{2^n(n-2)}{n!}a_1\bigg| \\&\qquad\quad+\sum_{n=4}^{\infty}\bigg|-\frac{(n-3)!}{2^{n-1}}\cdot\frac{2^n(n-2)}{n!}a_1\bigg|+\sum_{n=4}^{\infty}\bigg|-\frac{2^n(n-2)}{n!}a_1f(n)\bigg| \\\\&\le |a_0|+|a_1|+|a_2|+|a_3|+|a_0|\sum_{n=4}^{\infty}\frac{2^n(n-2)}{n!}+2|a_0|\sum_{n=4}^{\infty}\left(\frac{1}{n-1}-\frac 1n\right) \\&\qquad\quad +|a_0|\sum_{n=4}^{\infty}\frac{2^n(n-2)}{n!}f(n)+|a_1|\sum_{n=4}^{\infty}\frac{2^{n-1}(n-2)}{n!} \\&\qquad\quad +2|a_1|\sum_{n=4}^{\infty}\left(\frac{1}{n-1}-\frac 1n\right) +|a_1|\sum_{n=4}^{\infty}\frac{2^n(n-2)}{n!}f(n) \\\\&\le \frac{11}3|a_0|+3|a_1|+(2|a_0|+|a_1|)\sum_{n=1}^{\infty}\frac{2^{n+2}(n+1)}{(n+3)!} \\&\qquad\quad +(|a_0|+|a_1|)\sum_{n=1}^{\infty}\frac{2^{n+3}(n+1)}{(n+3)!}f(n+3)\tag1\end{align}
Ahora bien, como \lim_{n\to\infty}\left(\frac{2^{n+3}(n+2)}{(n+4)!}\div \frac{2^{n+2}(n+1)}{(n+3)!}\right)=\lim_{n\to\infty}\frac{\frac 2n+\frac{4}{n^2}}{1+\frac 5n+\frac{4}{n^2}}=0 vemos que \displaystyle\sum_{n=1}^{\infty}\frac{2^{n+2}(n+1)}{(n+3)!} converge por la prueba de proporción de d'Alembert.
Además, como
\begin{align}&n\left(1-\frac{2^{n+4}(n+2)}{(n+4)!}f(n+4)\div \frac{2^{n+3}(n+1)}{(n+3)!}f(n+3)\right) \\\\&=n\left(1-\frac{2(n+2)}{(n+4)(n+1)}\left(\frac{\frac{n!}{2^{n+1}}}{\sum_{k=4}^{n+3}\frac{(k-4)!}{2^{k-3}}}+1\right)\right) \\\\&\ge n\left(1-\frac{2(n+2)}{(n+4)(n+1)}\left(\frac{\frac{n!}{2^{n+1}}}{\frac{(n-1)!}{2^n}+\frac{(n-2)!}{2^{n-1}}}+1\right)\right) \\\\&=\frac{4+\frac 2n}{1+\frac 5n+\frac{4}{n^2}}\to 4\ \ (n\to\infty)\end{align} vemos que \displaystyle\sum_{n=1}^{\infty}\frac{2^{n+3}(n+1)}{(n+3)!}f(n+3) converge por la prueba de Raabe.
Se deduce de (1) que \sum_{n=0}^{\infty}|a_0|\lt \infty