Aquí está mi intento.
Deje $\epsilon >0.$ entonces $N \geq \frac{5}{\epsilon}$ , con $n \geq N \implies$
$| \frac{2n+\sin(n)}{n+2} -2|=| \frac{2n+\sin(n)-2n-4}{n+2}|=| \frac{\sin(n)-4}{n+2}|= \frac{|\sin(n)-4|}{n+2} \leq \frac{5}{n+2} \leq \frac{5}{n} \leq \epsilon$