<blockquote>
<p>Si $\displaystyle I = \sum^{98}_{k=1}\int^{k+1}_{k}\frac{k+1}{x(x+1)}dx.$ luego probar que $\displaystyle \ln\left(\frac{49}{50}\right)<I <\ln(99)$</p>
</blockquote>
<p>Tentativa: $$I = \sum^{98}_{k=1}\int^{k+1}_{k}(k+1)\bigg[\frac{1}{x(x+1)}\bigg]dx = \sum^{98}_{k=1}\int^{k+1}_{k}(k+1)\bigg[\frac{1}{x}-\frac{1}{x+1}\bigg]dx$ $</p>
<p>Así $$I = \sum^{98}_{k=1}(k+1)\bigg[\ln(x)-\ln(x+1)\bigg]\bigg|_{k}^{k+1}$ $</p>
<p>$$I= \sum^{98}_{k=1}(k+1)\bigg[\bigg(\ln(k+1)-\ln(k+2)\bigg)-\bigg(\ln(k)-\ln(k+1)\bigg)\bigg]$$</p>
<p>$$ \sum^{98}_{k=1}(k+1)\ln(k+1)-k\ln(k)-\sum^{98}_{k=1}(k+1)\ln(k+2)-k\ln(k+1)+\sum^{98}_{k=1}\ln(k+1)-\ln(k)$$</p>
<p>Así tenemos %#% $ #%</p>
<p>alguno me podria ayudar cómo probar $$I = \ln(2)+\ln \bigg(\frac{99}{100}\bigg)^{100}$ $, gracias</p>
Respuestas
¿Demasiados anuncios?
schooner
Puntos
1602