Necesito ayuda para calcular este límite:
PS
Y esta es la razón por la que$\lim_{n\to \infty}\frac{n^3}{3^n} = 0$. ${3^n}=(1+2)^n=1+n2+\frac{n(n-1)}{2}2^2+\frac{n(n-1)(n-2)}{3!}2^3+\frac{n(n-1)(n-2)(n-3)}{4!}2^4+...+2^n>\frac{n(n-1)(n-2)(n-3)}{4!}$
Y entonces,
$0 \le \lim_{n\to \infty}\frac{n^3}{3^n} \le \lim_{n\to \infty}\frac{n^3}{\frac{n(n-1)(n-2)(n-3)}{4!}}= 0$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.