¿Existe una función continua $f:\mathbb R^2\to \mathbb R$ tal que $\displaystyle \frac{\partial f}{\partial x}$ no existe sino $\displaystyle \frac{\partial^2 f}{\partial x\partial y}$ existe.
Yo creo que sí. Pero soy incapaz de encontrar un ejemplo de este tipo de función. Alguien me puede ayudar ?