4 votos

Teorema de los valores y sistemas contables

La media Teorema de valores dice que existe un $c∈(u,v)$ tal que $$f(v)-f(u)=f′(c)(v-u)$$ My question is: Assume that $u $ is a root of $f $, hence we obtain $$f(v)=f′(c)(v-u)$$ Assume that $f $ is a non-zero analytic function in the whole real line. My interest is about the real $ c∈ (u, v) $. I believe that the set of those $c $ is contable, otherwise we conclud that $f′ (c) $ is constant (in an open set containing $c $) since $v $ is a constant and hence $f $ is identically zero. Also, I think that the set of those $c$ es finito en número o como clases equivalentes (para funciones analíticas) pero no soy capaz de demostrar que.

Puedo definir la relación de equivalencia $ℜ$ por $$cℜd⇔f^{(1)}(c)=((1-t)/(1-u)).f^{(1)}(d)$ $

donde $u∈ℝ$ tal que el $g(u)=0$, $c∈(u,v)$% y $t∈ℝ$ tal que $g(t)=0$, $d∈(t,v)$

3voto

Seirios Puntos 19895

Ceros de un cero no analítico función aislada y porque $\mathbb{R}$ es separable, un conjunto discreto a lo más contable.

Por lo tanto, si ${c \in (u,v) \mid f(v)=f'(c)(v-u) }$ es incontable, es idénticamente igual a $f'$ $f(v)/(v-u)$. En particular, $f$ es lineal.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X