Mi intento:
Usando la fórmula de las combinaciones lineales de seno y coseno:
$$A \cos x+B \sin x=C \sin (x+\phi)$$
$$ \sqrt{51} \left(\frac{6}{\sqrt{51}} \cos x - \frac{5}{\sqrt{51}}\sin x\right) = 8 $$
$$ \frac{6}{\sqrt{51}} \cos x - \frac{5}{\sqrt{51}}\sin x = \frac{8}{\sqrt{51}} $$
Y, a continuación, asumir:
$$ \frac{6}{\sqrt{51}}= \cos \psi ; \frac{5}{\sqrt{51}}= \sin\psi ; $$
$$ \cos \psi \cos x - \sin \psi \sen x = \cos (x+ \psi) = \cos(x + \arccos ( \frac{6}{\sqrt{51}})) $$
$$ x + \arccos\left(\frac{6}{\sqrt{51}}\right) = \arcsin\left( \frac{8}{\sqrt{51}}\right) $$
$$ x \aprox 12^\circ $$
Pero la respuesta es: $$ -\frac{\pi}{4} + (-1)^n \frac{\pi}{4} + \pi n , n\in\Bbb Z $$