10 votos

Hipótesis de normalidad en la regresión lineal

Como supuesto de la regresión lineal, la normalidad de la distribución del error a veces se "extiende" erróneamente o se interpreta como la necesidad de normalidad de la y o la x.

¿Es posible construir un escenario/conjunto de datos en el que las X y las Y no sean normales pero el término de error sí lo sea y, por tanto, las estimaciones de regresión lineal obtenidas sean válidas?

5 votos

Ejemplo trivial: X tiene una distribución Bernoulli (es decir, toma los valores 0 ó 1); Y = X + N(0, 0,1). Ni X ni Y se distribuyen normalmente por sí mismos, pero la regresión de Y sobre X sigue funcionando.

0 votos

Supongo que estás pensando en la distribución de los residuos, no en la distribución de las variables.

5 votos

15voto

x0n Puntos 26002

Ampliando el comentario de Hong Oois con una imagen. Aquí hay una imagen de un conjunto de datos en el que ninguno de los marginales se distribuye normalmente, pero los residuos sí, por lo que los supuestos de la regresión lineal siguen siendo válidos:

enter image description here

La imagen fue generada por el siguiente código R:

library(psych)
x <- rbinom(100, 1, 0.3)
y <- rnorm(length(x), 5 + x * 5, 1)

scatter.hist(x, y, correl=F, density=F, ellipse=F, xlab="x", ylab="y")

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X