Si $f(n)=\alpha^n+\beta^n$ y
$$A=\left| \begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array} \right|$$
$=k(1-\alpha)^2(1-\beta)^2(\alpha-\beta)^2$
a continuación, $k=$ $a) 1\:\:\:$ $b)-1\:\:\:$ $c) \alpha\beta\:\:\:$ $d)\alpha\beta\gamma$
He hecho la suma, sino una respuesta no siempre, así que por favor a ver si estoy en lo cierto.
$$A=\left| \begin{array}{ccc} 3 & 1+\alpha+\beta & 1+\alpha^2+\beta^2 \\ 1+\alpha+\beta & 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 \\ 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4 \end{array} \right|$$
$=\left| \begin{array}{ccc} 1 & 1 & 1+\alpha^2+\beta^2 \\ 1 & 1 & 1+\alpha^3+\beta^3 \\ 1 & 1 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+\left| \begin{array}{ccc} 1 & \alpha & 1+\alpha^2+\beta^2 \\ 1 & \alpha^2 & 1+\alpha^3+\beta^3 \\ 1 & \alpha^3 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & \beta & 1+\alpha^2+\beta^2 \\ 1 & \beta^2 & 1+\alpha^3+\beta^3 \\ 1 & \beta^3 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & 1 & 1+\alpha^2+\beta^2 \\ \alpha & 1 & 1+\alpha^3+\beta^3 \\ \alpha^2 & 1 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & \alpha & 1+\alpha^2+\beta^2 \\ \alpha & \alpha^2 & 1+\alpha^3+\beta^3 \\ \alpha^2 & \alpha^3 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & \beta & 1+\alpha^2+\beta^2 \\ \alpha & \beta^2 & 1+\alpha^3+\beta^3 \\ \alpha^2 & \beta^3 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & 1 & 1+\alpha^2+\beta^2 \\ \beta & 1 & 1+\alpha^3+\beta^3 \\ \beta^2 & 1 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & \alpha & 1+\alpha^2+\beta^2 \\ \beta & \alpha^2 & 1+\alpha^3+\beta^3 \\ \beta^2 & \alpha^3 & 1+\alpha^4+\beta^4 \end{array} \right|$
$+ \left| \begin{array}{ccc} 1 & \beta & 1+\alpha^2+\beta^2 \\ \beta & \beta^2 & 1+\alpha^3+\beta^3 \\ \beta^2 & \beta^3 & 1+\alpha^4+\beta^4 \end{array} \right|$
Ahora, $\left| \begin{array}{ccc} 1 & \beta & 1+\alpha^2+\beta^2 \\ \beta & \beta^2 & 1+\alpha^3+\beta^3 \\ \beta^2 & \beta^3 & 1+\alpha^4+\beta^4 \end{array} \right|=0$
$\left| \begin{array}{ccc} 1 & 1 & 1+\alpha^2+\beta^2 \\ 1 & 1 & 1+\alpha^3+\beta^3 \\ 1 & 1 & 1+\alpha^4+\beta^4 \end{array} \right|=0$
$ \left| \begin{array}{ccc} 1 & \alpha & 1+\alpha^2+\beta^2 \\ \alpha & \alpha^2 & 1+\alpha^3+\beta^3 \\ \alpha^2 & \alpha^3 & 1+\alpha^4+\beta^4 \end{array} \right|=0$
Poniendo eso y teniendo en común, al final obtenemos:
$A= (\alpha\beta^2-\beta\alpha^2-\beta^2+\beta+\alpha^2-\alpha) \cdot B$
donde $B= \left| \begin{array}{ccc} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{array} \right|$ $=-(1-\alpha)(1-\beta)(\alpha-\beta)$
Así que, finalmente, la factorización, $A= (1-\alpha)^2 (1-\beta)^2 (\alpha-\beta)^2$
Por eso, $k=1$
Estoy en lo cierto?