ps
Deje$$\frac{a_{n+3}}{a_{n+1}}=\frac{a_{n+2}}{a_{n}}$,$b_n=\frac{a_{n+2}}{a_{n}}$ $
ps
Asi que, $$b_{n+1}=b_n=\cdots=b_1=\frac{a_{3}}{a_{1}}=\frac {\gamma}{\alpha}$
Si$$\implies \frac{a_{n+2}}{a_{n}}=\frac {\gamma}{\alpha}$ es par,$a_{n+2}=\frac {\gamma}{\alpha}a_n=\cdots=\left(\frac {\gamma}{\alpha}\right)^{\frac{n+2-r}2} a_r$ (por ejemplo)$n$
Entonces,$=2m$ para hacer$a_{2m+2}=\left(\frac {\gamma}{\alpha}\right)^{\frac{2m+2-r}2} a_r=\left(\frac {\gamma}{\alpha}\right)^ma_2=\left(\frac {\gamma}{\alpha}\right)^m\beta$ entero.
Si$(\alpha)^m\mid (\gamma)^m\beta$ es impar,$a_{2m+2}$ (por ejemplo)$n$
Entonces,$=2m+1$ para hacer$a_{2m+3}=\left(\frac {\gamma}{\alpha}\right)^{\frac{2m+3-r}2} a_r=\left(\frac {\gamma}{\alpha}\right)^ma_3=\left(\frac {\gamma}{\alpha}\right)^m\gamma$ entero.
Combinar$(\alpha)^m\mid (\gamma)^{m+1}$ para mantener$a_{2m+3}$ entero para el entero$\alpha^m\mid (\gamma^{m+1},\gamma^m\beta)\iff\alpha^m\mid (\gamma^m(\beta,\gamma))$