Demostrar que $$\sum _{l=1}^{n}\sum _{k=1}^{n-1}\tan \frac {lk\pi } {2n+1}\tan \frac {l( k+1) \pi } {2n+1}=0$$
Es muy fácil demostrar esta identidad para cada fijo $n$ . Por ejemplo $n = 6$ escribiendo todos los términos en un $5 \times 6$ matriz, obtenemos:
$\begin{matrix} \tan \dfrac {\pi } {13}\tan \dfrac {2\pi } {13} & \tan \dfrac {2\pi } {13}\tan \dfrac {3\pi } {13} & \tan \dfrac {3\pi } {13}\tan \dfrac {4\pi } {13} & \tan \dfrac {4\pi } {13}\tan \dfrac {5\pi } {13} & \tan \dfrac {5\pi } {13}\tan \dfrac {6\pi } {13} \\ \tan \dfrac {2\pi } {13}\tan \dfrac {4\pi } {13} & \tan \dfrac {4\pi } {13}\tan \dfrac {6\pi } {13} & \tan \dfrac {6\pi } {13}\tan \dfrac {8\pi } {13} & \tan \dfrac {8\pi } {13}\tan \dfrac {10\pi } {13} & \tan \dfrac {10\pi } {13}\tan \dfrac {12\pi } {13} \\ \tan \dfrac {3\pi } {13}\tan \dfrac {6\pi } {13} & \tan \dfrac {6\pi } {13}\tan \dfrac {9\pi } {13} & \tan \dfrac {9\pi } {13}\tan \dfrac {12\pi } {13} & \tan \dfrac {12\pi } {13}\tan \dfrac {15\pi } {13} & \tan \dfrac {15\pi } {13}\tan \dfrac {18\pi } {13} \\ \tan \dfrac {4\pi } {13}\tan \dfrac {8\pi } {13} & \tan \dfrac {8\pi } {13}\tan \dfrac {12\pi } {13} & \tan \dfrac {12\pi } {13}\tan \dfrac {16\pi } {13} & \tan \dfrac {16\pi } {13}\tan \dfrac {20\pi } {13} & \tan \dfrac {20\pi } {13}\tan \dfrac {24\pi } {13} \\ \tan \dfrac {5\pi } {13}\tan \dfrac {10\pi } {13} & \tan \dfrac {10\pi } {13}\tan \dfrac {15\pi } {13} & \tan \dfrac {15\pi } {13}\tan \dfrac {20\pi } {13} & \tan \dfrac {20\pi } {13}\tan \dfrac {25\pi } {13} & \tan \dfrac {25\pi } {13}\tan \dfrac {30\pi } {13} \\ \tan \dfrac {6\pi } {13}\tan \dfrac {12\pi } {13} & \tan \dfrac {12\pi } {13}\tan \dfrac {18\pi } {13} & \tan \dfrac {18\pi } {13}\tan \dfrac {24\pi } {13} & \tan \dfrac {24\pi } {13}\tan \dfrac {30\pi } {13} & \tan \dfrac {30\pi } {13}\tan \dfrac {36\pi } {13} \end{matrix}$
se puede notar entonces, que la primera columna desaparece la cuarta :
$\tan \dfrac {\pi } {13}\tan \dfrac {2\pi } {13}=-\tan \dfrac {12\pi } {13}\tan \dfrac {15\pi } {13}$
$\tan \dfrac {2\pi } {13}\tan \dfrac {4\pi } {13}=-\tan \dfrac {24\pi } {13}\tan \dfrac {30\pi } {13}$
$\tan \dfrac {3\pi } {13}\tan \dfrac {6\pi } {13}=-\tan \dfrac {16\pi } {13}\tan \dfrac {20\pi } {13}$
$\tan \dfrac {4\pi } {13}\tan \dfrac {8\pi } {13}=-\tan \dfrac {4\pi } {13}\tan \dfrac {5\pi } {13}$
$\tan \dfrac {5\pi } {13}\tan \dfrac {10\pi } {13}=-\tan \dfrac {8\pi } {13}\tan \dfrac {10\pi } {13}$
$\tan \dfrac {6\pi } {13}\tan \dfrac {12\pi } {13}=-\tan \dfrac {20\pi } {13}\tan \dfrac {25\pi } {13}$
y la tercera columna desaparece la quinta :
$\tan \dfrac {3\pi } {13}\tan \dfrac {4\pi } {13}=-\tan \dfrac {30\pi } {13}\tan \dfrac {36\pi } {13}$
$\tan \dfrac {6\pi } {13}\tan \dfrac {8\pi } {13}=-\tan \dfrac {5\pi } {13}\tan \dfrac {6\pi } {13}$
$\tan \dfrac {9\pi } {13}\tan \dfrac {12\pi } {13}=-\tan \dfrac {25\pi } {13}\tan \dfrac {30\pi } {13}$
$\tan \dfrac {12\pi } {13}\tan \dfrac {16\pi } {13}=-\tan \dfrac {10\pi } {13}\tan \dfrac {12\pi } {13}$
$\tan \dfrac {15\pi } {13}\tan \dfrac {20\pi } {13}=-\tan \dfrac {20\pi } {13}\tan \dfrac {24\pi } {13}$
$\tan \dfrac {18\pi } {13}\tan \dfrac {24\pi } {13}=-\tan \dfrac {15\pi } {13}\tan \dfrac {18\pi } {13}$
mientras que la segunda columna es autovanguardista:
$\tan \dfrac {2\pi } {13}\tan \dfrac {3\pi } {13}=-\tan \dfrac {10\pi } {13}\tan \dfrac {15\pi } {13}$
$\tan \dfrac {4\pi } {13}\tan \dfrac {6\pi } {13}=-\tan \dfrac {6\pi } {13}\tan \dfrac {9\pi } {13}$
$\tan \dfrac {8\pi } {13}\tan \dfrac {12\pi } {13}=-\tan \dfrac {12\pi } {13}\tan \dfrac {18\pi } {13}$ .
Así que la igualdad se produce. Pero, ¿cómo generalizar la prueba?