Como se indica en el título, debo demostrar que $(a+b+c)^3 = a^3 + b^3 + c^3 + (a+b+c)(ab+ac+bc)$.
Mi razonamiento: $$(a + b + c)^3 = [(a + b) + c]^3 = (a + b)^3 + 3(a + b)^2c + 3(a + b)c^2 + c^3$ $
$$(a + b + c)^3 = (a^3 + 3a^2b + 3ab^2 + b^3) + 3(a^2 + 2ab + b^2)c + 3(a + b)c^2+ c^3$$
$$(a + b + c)^3 = a^3 + b^3 + c^3 + 3a^2b + 3a^2c + 3ab^2 + 3b^2c + 3ac^2 + 3bc^2 + 6abc$$
$$(a + b + c)^3 = (a^3 + b^3 + c^3) + (3a^2b + 3a^2c + 3abc) + (3ab^2 + 3b^2c + 3abc) + (3ac^2 + 3bc^2 + 3abc) - 3abc$$
$$(a + b + c)^3 = (a^3 + b^3 + c^3) + 3a(ab + ac + bc) + 3b(ab + bc + ac) + 3c(ac + bc + ab) - 3abc$$
$$(a + b + c)^3 = (a^3 + b^3 + c^3) + 3(a + b + c)(ab + ac + bc) - 3abc$$
%#% $ #% No parece que cometí errores por descuido, por lo que me pregunto si lo pidió es correcta.