Respuesta
¿Demasiados anuncios?Está bien.
Tal vez sería computar usando coordenadas polares:<span class="math-container">$$\int_{-\frac\pi2}^\frac\pi2\int0^1r^3\cos^2(\theta)+r^6\cos^2(\theta)\sin^3(\theta)\,\mathrm dr\,\mathrm d\theta.$$Using the same argument as yours, this is just<span class="math-container">$$\int{-\frac\pi2}^\frac\pi2\int_0^1r^3\cos^2(\theta)\,\mathrm dr\,\mathrm d\theta,$$</span>which is equal to<span class="math-container">$% $ $\left(\int0^1r^3\,\mathrm dr\right)\left(\int{-\frac\pi2}^\frac\pi2\cos^2(\theta)\,\mathrm d\theta\right)=\frac\pi8.$</span></span>