Tenemos $\mathrm{var}_p\left(X\right)=\mathbb{E}_p\left[X^2\right]-\mathbb{E}p\left[X\right]^2. Además, \lambda\in\left[0,1\right] podemos escribir $\mathbb{E}{\lambda p+(1-\lambda)q}\left[X^2\right]=\lambda\mathbb{E}_p\left[X^2\right]+(1-\lambda)\mathbb{E}_q\left[X^2\right].$$ Convexity of \left (\cdot\right) ^ 2 and Jensen's inequality then yield % $\lambda \mathbb{E}_p\left[X\right]^2+(1-\lambda) \mathbb{E}_q\left[X\right]^2\geq \left(\lambda\mathbb{E}_p\left[X\right]+(1-\lambda)\mathbb{E}q\left[X\right]\right)^2=\mathbb{E}{\lambda p+(1-\lambda)q}\left[X\right]^2.$
Así deducimos $$\mathrm{var}{\lambda p+(1-\lambda)q}\left(X\right)=\mathbb{E}{\lambda p+(1-\lambda)q}\left[X^2\right]-\mathbb{E}_{\lambda p+(1-\lambda)q}\left[X\right]^2\\geq\lambda\mathrm{var}_p\left(X\right)+(1-\lambda)\mathrm{var}_q\left(X\right), que significa que la varianza es cóncavo.